
Deliverable D 5.3
Report on identification of migration strategies

and roadmaps for AI integration in the rail sector

Project acronym: RAILS
Starting date: 01/12/2019
Duration (in months): 43
Call (part) identifier: H2020-S2R-OC-IPX-01-2019
Grant agreement no: 881782
Due date of deliverable: Month 43
Actual submission date: August 11th 2023
Responsible/Author: Rob Goverde (TU Delft)
Dissemination level: Public
Status: Issued

Reviewed: no

GA 881782 Page 1 | 59

Ref. Ares(2023)5566431 - 11/08/2023



Document history
Revision Date Description

1 August 7th 2023 First issue for internal review
2 August 11th 2023 Second issue after internal review

Report contributors

Name Beneficiary Short
Name

Details of contribution

Rob Goverde TUDELFT Coordinator
Lorenzo De Donato CINI Contributor
Ruifan Tang LEEDS Contributor
Francesco Flammini LNU Contributor
Zhiyuan Lin LEEDS Contributor
Ronghui Liu LEEDS Contributor
Valeria Vittorini CINI Internal Review

Funding
This project has received funding from the Shift2Rail Joint Undertaking under the European
Union’s Horizon 2020 research and innovation programme under grant agreement n.
881782 Rails. The JU receives support from the European Union’s Horizon 2020 research
and innovation program and the Shift2Rail JU members other than the Union.

Disclaimer
The information and views set out in this document are those of the author(s) and do not
necessarily reflect the official opinion of Shift2Rail Joint Undertaking. The JU does not
guarantee the accuracy of the data included in this document. Neither the JU nor any person
acting on the JU’s behalf may be held responsible for the use which may be made of the
information contained therein.

GA 881782 Page 2 | 59



Contents

Executive Summary 5

Abbreviations and acronyms 6

1. Background 7

2. Objective 8

3. Introduction 9

4. RAILS Roadmapping Process 10

4.1 Introduction 10

4.2 Roadmapping Steps and Outcomes 10

4.3 Summary of Implemented Proof-of-Concepts 12

4.4 The Roadmapping Survey 15

5. Integrating AI in Railway Safety and Automation 17

5.1 Introduction 17

5.2 Fully Autonomous Trains in Open Environments 18

5.2.1 Estimated Maturity Level and Time to Full Maturity 19

5.2.2 Current Criticalities 20

5.3 Obstacle Detection Through On-board Cameras and Artificial Vision 21

5.3.1 Estimated Maturity Level and Time to Full Maturity 21

5.3.2 Current Criticalities 22

5.4 Future Research Directions 23

6. Integrating AI in Railway Maintenance and Inspection 33

6.1 Introduction 33

6.2 Intelligent Audio-Video Technologies for Non-intrusive Infrastructure Inspection 34

6.2.1 Estimated Maturity Level and Time to Full Maturity 34

6.2.2 Current Criticalities 35

6.3 Intelligent Digital Twins for Predictive Maintenance of Railway Assets 36

6.3.1 Estimated Maturity Level and Time to Full Maturity 37

6.3.2 Current Criticalities 37

GA 881782 Page 3 | 59



6.4 Future Research Directions 38

7. Integrating AI in Railway Traffic Planning and Management 44

7.1 Introduction 44

7.2 Train Delay Prediction Using Graph Embedding 44

7.2.1 Estimated Maturity Level and Time to Full Maturity 45

7.2.2 Current Criticalities 45

7.3 Railway Incident Attribution Analysis Using Big Data Analytics 47

7.3.1 Estimated Maturity Level and Time to Full Maturity 47

7.3.2 Current Criticalities 48

7.4 Future Research Directions 49

8. Other Findings and Directions from the Roadmapping Survey 52

8.1 Introduction 52

8.2 Mixed-Reality Technologies to Support AI Testing 52

8.3 Sharing Relevant Datasets for Benchmarking AI Technologies for Railways 53

8.4 Most Promising Future Railway Applications 55

9. Conclusions 56

GA 881782 Page 4 | 59



Executive Summary

This document provides roadmaps for the adoption of AI in the rail sector with a specific
focus on autonomous trains, maintenance and inspection and traffic planning and manage-
ment. More specifically, this document provides a detailed account of the steps taken and
the results obtained in the roadmapping process, which was conducted through the research
activities of the project. It also includes references to the documents that describe and report
on the outcomes achieved. Additionally, it finalizes the roadmapping process by addressing
considerations regarding the timeframes necessary for achieving full applicability and matu-
rity of AI-powered solutions stemming from the proof-of-concepts developed in the project,
the associated criticalities, and suggestions for future research directions. By addressing
specific and overarching aspects, this document aims to drive further development, exper-
imentation, and application of AI, ultimately fostering efficiency, safety, and progress in the
railway industry as a whole.
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Abbreviations and acronyms

Abbreviations / Acronyms Description
AI Artificial Intelligence
AIDT AI-aided Digital Twin
AoE ATO over ETCS
ATC Automatic Train Control
ATO Automatic Train Operation
ATP Automatic Train Protection
ATS Automatic Train Supervision
CI Cloud Intelligence
DT Digital Twin
EI Edge Intelligence
ETCS European Train Control System
FI Fog Intelligence
GoA Grade of Automation
GoI Grade of Intelligence
HMI Human-Machine Interface
I2X Infrastructure-to-Everything
IDK I Do not Know
IHM Infrastructure Health Monitoring
IoT Internet of Things
IT Information Technology
ITC Intelligent Train Control
ITO Intelligent Train Operation
ITP Intelligent Train Protection
ITS Intelligent Train Supervision
LoI Level of Intelligence
PoC Proof-of-Concept
PT Physical Twin
RUL Remaining Useful Life
SIL Safety Integrity Level
T2X Train-to-Everything
TRL Technology Readiness Level
VBODS Vision-Based Obstacle Detection System
VC Virtual Coupling
VHM Vehicle Health Monitoring
WP Workpackage
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1. Background

RAILS is a research and investigation project producing outcomes at TRL levels 2-3. The
research was conducted in three phases to:

• Discover the potential of AI for railways identify promising application areas in the rail
sector and specific needs and related challenges;

• Assess the impact of AI techniques by performing an analysis of other relevant sectors,
defining pilot case studies and applying selected approaches to the pilot case studies
in concrete operational scenarios;

• Learn the distance from the current state of the art in railways and the digital and
technological prerequisites for AI adoption, the possible innovations, the research di-
rections and impacts for the European rail sector as to provide indications, recommen-
dations and proper guidelines for future research and implementations.

The RAILS project followed the Technology Road-Mapping Methodology in order to suggest
strategies for the fast take up of AI technology in railways, therefore the research activities
that have been carried out during the project must be seen as part of a single roadmapping
process. Figure reffig:rails depicts the logical connections between the three phases and
the railway realms addressed by the project.

Fig. 1.1. RAILS Phases and Scope
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2. Objective

The objective of this document is to outline the RAILS roadmapping process, which is aimed
at exploring the integration of Artificial Intelligence (AI) within various aspects of the railway
industry and research, with a specific focus on control and autonomous driving, predictive
maintenance and defect detection, and traffic planning and management.
Through a comprehensive description of the roadmapping journey, this document aims to
provide a clear understanding of the steps undertaken and the outcomes achieved through-
out the process. It delves into the specifics of each topic area, examining the estimated
maturity levels and timeframes for the adoption of AI technologies.
By presenting the current criticalities and challenges associated with integrating AI in the
railway sector, the document seeks to shed light on the issues that need to be overcome for
successful implementation. Additionally, this document highlights the emerging directions
and opportunities discovered through the roadmapping process, underscoring mixed-reality
technologies, dataset sharing for benchmarking AI technologies, and promising future rail-
way applications.
Overall, it serves as a guiding roadmap for effectively harnessing the power of AI to enhance
safety, efficiency, and performance within the railway industry.
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3. Introduction

The present document reports about the overall RAILS research to shape the roadmaps for
the exploitation of AI in railways, including promising research directions and strategies for a
safe take-up of AI techniques.
All the activities carried out in the project constitute the implementation of a roadmapping
process, as explained in Chapter 4, and therefore, the results obtained effectively form a
technological roadmap for research in the field of applying artificial intelligence in the railway
sector.
Hence, Chapter 4 presents a comprehensive overview of the roadmapping process, high-
lighting the key steps taken and the results achieved. It serves as a synthesis of the project’s
activities and their alignment with the roadmap and explains how the outcomes of these
activities can be mapped onto the roadmaps. This involves linking the achieved results to
the corresponding milestones and goals outlined in the roadmap process for all the topics
addressed by the project.
In the following chapters, the report delves into the specifics of the roadmap for each topic
addressed in the project, providing guidance for future research and a timeline for achieving
full maturity in the use of AI-based technologies in the specific domain at hand. An online
survey was conducted during the final event of the project among a group of experts in the
topics and the issues related to the application of AI techniques to railways. The finding from
this survey have been included.
Specifically, Chapter 5, 6, and 7 are devoted to the topics covered in the three technical
workpackages during the assess phase of the project, whereas Chapter 8 explores cross-
cutting themes and research areas that have emerged from the project and have relevance
across multiple topics addressed in the roadmaps.
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4. RAILS Roadmapping Process

4.1. Introduction

Technology roadmapping is a technique to support planning and pursue short-term or long-
term goals exploiting specific technology solutions [1]. Technology roadmaps have been
classified in the literature according to their purpose and seven types of roadmaps have
been identified in [2]: Product planning, Service/capability planning, Strategic planning,
Long-range planning, Knowledge asset planning, Program planning, Process planning, and
Integration planning.
Although the most common types are Product and Service planning, RAILS specifically fo-
cused on the development of roadmaps for strategic planning, supporting the evaluation
of strengths, weaknesses, opportunities, and threats of Artificial Intelligence technologies
and approaches in the development of the future Railways, by comparing the current status
of practice with strategic options explored to bridge the gaps. In this Chapter, the RAILS
roadmapping process is illustrated to provide a bird’s eye view of the work and main out-
comes of the project.

4.2. Roadmapping Steps and Outcomes

Due to the broad scope of the investigation conducted in RAILS, more roadmaps have been
developed. The roadmaps are in selected research macro-areas related to or crossing the
technical work packages WP2, WP3, and WP4.
The developed roadmaps are intended to provide indications and suggestions for the
next research activities in the field:

• They suggest ideas and propose steps to foster innovation in railways;
• They may help reach a consensus about the steps required to bridge the gap between

the opportunities opened by AI and the full exploitation of AI solutions;
• They provide recommendations and information to support the innovation process.

The technology roadmapping process includes three phases: preliminary activities, devel-
opment of the roadmap, and follow-up activities.
The preliminary phase defines the scope and boundaries of the technology roadmap. This
phase has been conducted during the preparation of the project proposal when three macro-
areas have been selected for the roadmapping and the objectives have been identified as
well as during the first phase of the project, through the definition of a taxonomy of AI for
railways (WP1).
In the development phase, the following seven steps were taken in RAILS for each macro-
area:

1. Identify the railway services/systems/products, i.e., identify the concrete railway prob-
lems that are the focus of the roadmaps.

2. Define the critical system requirements on the basis of what is decided that must be
road-mapped, e.g. identify applicability issues, constraints, and requirements.

3. Specify the major technology areas, case studies, and operational scenarios.
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4. Transform requirements into technology drivers with specific targets according to each
operational scenario.

5. Develop AI-powered approaches/solutions and Identify alternatives, where possible,
and their timelines.

6. Identify innovation needs and recommended improvements.
7. Create the Technology Roadmap Report.

The roadmap development phase was carried out for each macro-area, we recall that the
three macro-areas are: Rail Safety and Automation (WP2), Predictive Maintenance and
Defect Detection (WP3), Traffic Planning and Management (WP4). The first step for all
roadmaps was done in WP1, through a review of the scientific literature, the examination of
the ongoing work in European and overseas projects, the analysis of the EU regulation and
directives at the date, and a survey among the railway stakeholders on the challenges and
the state-of-practice of the usage of AI in railways.
Table 4.1 provides a mapping between the roadmaps development steps and the deliver-
ables in which the related activities and outcomes are reported.

Table 4.1: Roadmapping Steps, Reports, and Outcomes
# Step WP2 WP3 WP4 Outcomes

1 Identify concrete
railway problems.

D1.1
D1.2

D1.1
D1.2

D1.1
D1.2

Identification of Railway problems
and review of AI applications
to Railway problems.
Identification of research directions
and uncharted areas emerged from the analysis
of the state-of-the-art.

2
Identify constraints,
applicability issues,
and requirements.

D1.1
D1.3

D1.1
D1.3

D1.1
D1.3

Review of EU guidelines,
Regulations and directives on AI,
Explainable AI,
Criticalities and milestones,
Ethical and Privacy aspects,
Urgent issues and strategic
application areas.

3
Specify technology areas,
pilot case studies,
and operational scenarios.

D2.1
D2.2

D3.1
D3.2

D4.1
D4.2

AI Emerging Technologies
in sectors other than Railways,
Transferability guidelines,
Pilot Case studies identification,
Scenarios definition.

4 Transform requirements
into technology drivers

D1.3
D2.1
D2.2

D1.3
D3.1
D3.2

D1.3
D4.1
D4.2

Basic AI Usage Guidelines,
Enabling Technologies,
Reference datasets
and Machine Learning models

5

Develop AI-powered
approaches,
Identify alternatives,
and their timelines.

D2.3 D3.3 D4.3

Proof-of-concepts (PoCs)
for the selected scenarios:
KPIs, ML models, Experiments, Results,
Possible alternatives

6
Identify innovation needs
and recommended
improvements.

D2.4 D3.4 D4.4
Results of the SWOT Analysis of the PoCs,
Recommendations and Innovation needs

7 Create the Technology
Roadmap Report

All the above
D5.3

All the above
D5.3

All the above
D5.3

This document:
Timeline indications derived from:
i) previous steps
ii) relevant stakeholders’s opinion, and
iii) further available analysis results.
Current criticalities and suggested
research directions for innovation
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As can be seen from the table, the Technology Roadmap Report is in all respects distributed
among the project deliverables. The present document just tries to summarize the main
outcomes and provides a synthesis, also including the time horizon, but it cannot cover all
the aspects and results reported in the previous deliverables which all together report the
developed roadmaps.
Finally, the third phase of the roadmapping process consists of the follow-up activities. The
roadmaps must be disseminated and presented to the railway target groups, so that they
can be discussed, validated, and hopefully used with the necessary modifications by the
railway stakeholders to stimulate future research and impact the next railways. This would
be the best possible exploitation of the project results.

4.3. Summary of Implemented Proof-of-Concepts

The main results from Proof-of-Concepts (PoCs) and general recommendations are reported
in deliverables D2.4, D3.4, and D4.4. In this section, a synthetic overview is provided. Please
refer to the specific deliverables for an in-depth treatment and discussion.
Following the outcomes of the first phase of the project, two pilot case studies have been
identified for each technical WP to investigate innovative and strategic applications of AI
methods in different railway domains, and a PoC has been developed for each case study.
In addition, general research directions have been investigated.
The pilot case studies (and related PoCs) are the following:

• WP2 - Artificial intelligence for rail safety and automation.
– “Vision-based Obstacle Detection on Rail Tracks”. The related PoC developed

a modular approach with two main objectives: i) to detect any kind of obstacle
by leveraging Unsupervised Deep Learning for anomaly detection, and ii) to
investigate the potentiality and limits of the simplest system mounted on-board
the train (i.e., a single RGB camera).

– “Cooperative Driving for Virtual Coupling of Autonomous Trains”. The related PoC
proposed a Deep Deterministic Policy Gradient (DDPG) control strategy, which
belongs to the Deep Reinforcement Learning (DRL) methods, to investigate the
effectiveness of the Virtual Coupling tactical layer.

• WP3 - Artificial intelligence for predictive maintenance and defect detection.
– “Smart Maintenance at Level Crossings”. The related PoC developed a multi-

modular framework for the intelligent monitoring of Level Crossings (LCs) based
on Deep Learning and non-intrusive sensors (cameras and microphones).

– “AI-based Rolling Stock Rostering”. The related PoC proposed a roster-
ing/maintenance framework exploiting Reinforcement Learning.

• WP4 - Artificial intelligence for traffic planning and management.
– “Primary Delay Prediction”. The related PoC had the objective to explore and

evaluate the effectiveness of delay prediction frameworks using advanced AI al-
gorithms, such as the Structural Deep Network Embedding algorithm and Prin-
ciple Component Analysis.

– “Incident Attribution Analysis”. The related PoC used Big Data for interactive
delay attribution visualization to reproduce how delays are triggered and subse-
quently propagated due to small disturbances, disruptions, or unexpected events,
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and exploited Graph Neural Network techniques for predicting potential propa-
gation links.

For each PoC the roadmapping steps have been carried out and reported as summarised in
Table 4.1. Experiments have been conducted and the results obtained have been discussed
in Deliverables D2.3, D3.3, and D4.3 respectively.
From the research activities, recommendations and innovation needs have been identified
in deliverables D2.4, D3.4, and D4.4 where the results of the SWOT analysis performed for
each PoC are also reported. The SWOT analysis is a strategic evaluation model used in
various contexts. In RAILS, we applied the SWOT analysis to identify and assess the in-
ternal and external factors of the approaches and/or techniques used to develop the PoCs.
These factors include: Strengths, which are advantageous internal aspects that contribute
to success; Weaknesses, representing internal limitations that could hinder success; Oppor-
tunities, external factors that offer the potential for success; and Threats, external elements
that could pose risks to success.
Figures 4.1, 4.2, and 4.3 provide a consolidated and synthetic overview of the SWOT anal-
ysis results that are distributed and discussed across three distinct documents, allowing for
a comprehensive view of the main factors impacting the investigated approaches as they
emerged from our studies. Therefore, the reported factors just refer to our PoCs implemen-
tations and the specific AI techniques we adopted for the PoCs as specified above and in
the caption of the figures.

Fig. 4.1. SWOT results for WP2 PoCs - Left: Unsupervised DL for anomaly detection,
single RGB camera - Right: DDPG control strategy.
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Fig. 4.2. SWOT results for WP3 PoCs - Left: Intelligent monitoring of LCs based on Deep
Learning and non-intrusive sensors. Right: Rostering/Maintenance framework based on

Reinforcement Learning.

As also emerges from the previous discussion, the pilot case studies were conceived as
benchmarks for developing PoCs. Some of the data collected to develop the “Vision-based
Obstacle Detection on Rail Tracks” PoC 1 and the “Smart Maintenance at Level Crossings”
PoC 2 were made publicly available on the Zenodo platform.
Several topics have been analysed and investigated in the context of the PoCs and more
in general in the context of the three technical work packages. Such topics were either
functional for the research activities or strictly connected with the application area addressed
by the case studies. They span from the role and opportunities offered by digital twins to
the cloud, edge, and fog computing paradigms, as well as the challenges posed by the
lack of appropriate datasets and the necessity for new standards and regulations. These
topics were also investigated, and some of them were included in the survey conducted at
the project’s conclusion. The goal was to engage a group of railway experts in discussing
the associated matters and estimating the time needed to achieve complete technological
maturity. The outcomes of this survey, along with the research directions that emerged from
the comprehensive research and analysis conducted throughout the project, are detailed in
the following chapters.

1https://zenodo.org/record/7924875
2https://zenodo.org/record/7945412
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Fig. 4.3. SWOT results for WP4 PoCs - Left: Structural Deep Network Embedding algorithm
and Principle Component Analysis. Right: Big Data for interactive delay attribution

visualisation and Graph Neural Network techniques for predicting propagation links.

4.4. The Roadmapping Survey

Two surveys were conducted during the project, each with distinct aims and scopes. The
first survey aimed to assess the state-of-practice, challenges, and issues related to the adop-
tion of AI in the railway sector. Conducted in the project’s initial phase, it aimed to provide
valuable insights into the research activities. Railway stakeholders within the RAILS target
groups were invited to participate in an online questionnaire, designed to gather compre-
hensive information.
The second survey took place within an interactive session hosted at the project’s final
event. The questionnaire was administered to a panel of about 40 experts from industry,
academia, and regulatory bodies. The purpose was to gather information necessary for
shaping roadmaps regarding the application of AI in the project’s focused areas and ensure
that the project’s insights in these domains were representative of the collective knowledge
and expertise within the railway community.
The questionnaire included four sections, one for each work package, and a section related
to cross-cutting topics. Within each work package, two topics addressing relevant technology
were included as follows:

• WP2-related topics:
– Fully Autonomous Trains in Open Environments.
– Obstacle Detection Through On-board Cameras and Artificial Vision.
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• WP3-related topics:
– Intelligent Audio-Video Technologies for Non-intrusive Infrastructure Inspection.
– Intelligent Digital Twins for Predictive Maintenance of Railway Assets.

• WP4-related topics:
– Train Delay Prediction using Machine Learning
– Railway Incident Attribution Analysis Using Big Data Analytics.

The fourth section included the following topics:

• Mixed-Reality Technologies to Support AI Testing
• Sharing Relevant Datasets for Benchmarking AI Technologies for Railways.
• Promising AI Applications to Railways in the Next 10 Years.

For every topic, the same set of question types was employed:
• Technology Readiness Level (TRL) Question: A multiple-choice question asking about

the estimated TRL of the technology. For the sake of clarity Table 4.2 provides a
correlation between each TRL and its corresponding description.

• Commercial Availability Question: A multiple-choice question inquiring about the ex-
pected time for the technology to full maturity.

• Critical Points Question: An open-ended question prompting respondents to identify
issues to be overcome.

This structure was consistently applied across all work packages and topics, facilitating a
clear and uniform approach to gather information.

Table 4.2: Technology Readiness Level (TRL)

Level Description

TRL1 Basic principles observed.
TRL2 Technology concept formulated.
TRL3 Experimental proof-of-concept.
TRL4 Technology validated in lab.
TRL5 Technology validated in relevant environment.
TRL6 Technology demonstrated in relevant environment.
TRL7 System prototype demonstration in operational environment.
TRL8 System complete and qualified.
TRL9 Actual system proven in operational environment.
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5. Integrating AI in Railway Safety and Automation

5.1. Introduction

Over the last few years, there has been a huge interest in improving the automation, effi-
ciency, and capacity of railway lines, with safety being the central aspect to be ensured in
order to provide passengers with reliable services.
So far, railway lines have been classified according to some Grade of Automation (GoA)
levels (reported in Table 5.1) which reflect the presence of automatic train systems (sum-
marised in Table 5.2) and the need for human operators (drivers or crew members) whose
constant role across the various level (up to GoA3) is to ensure operations’ safety. Nowa-
days, we can affirm that, in certain circumstances, railway lines have reached the GoA4
level, with trains operating completely unattended with high efficiency. This is the case of
various metro lines worldwide, which we can define as segregate environments as they are
protected from external threats by means of physical barriers (e.g., platform screen doors)
which should keep all undesired and harmful events outside from rail tracks.

Table 5.1: Grade of Automation (GoA) levels.

Level Description

GoA 0 Train operations are manually supervised by the driver, no automation.
GoA 1 Train operations are manually supervised by the driver supported by ATP.

GoA 2 Semi-automatic train operation. ATO and ATP systems automatically
manage train operations and protection while supervised by the driver.

GoA 3 Driverless train operation with on-board staff handling possible emergencies.
GoA 4 Unattended train operation, neither the driver nor the staff is required.

Table 5.2: Automatic Train Systems.
System Description

Automatic Train Operation (ATO) Used to automatically drive the train and stop at stations when needed.
Automatic Train Protection (ATP) Used to automatically protect the train by applying brakes when needed.
Automatic Train Control (ATC) Both ATP and ATO are in place to ensure full control of the train.
Automatic Train Supervision (ATS) Used to manage train schedules and coordinate routes along whole tracks.

Considering the investigations conducted within the RAILS project, things get more com-
plicated when talking about open environments (e.g., main railway lines), which may also
present interconnections with other domains (e.g., with roads at level crossings). Hence,
safety cannot be ensured by using static physical barriers and must be managed at run-
time by, for example, giving trains or trackside equipment the capability of analysing multiple
factors and taking autonomous decisions in order to both increase efficiency and ensure
safety.
Basically, what would be needed is a paradigm shift from Automatic operations to
Autonomous operations. Automation refers to actions taken automatically or semi-
automatically basing on a set of pre-specified rules; differently, Autonomy refers to the ability
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of a system to promptly adapt to any possible situation by taking independent decisions [3,4].
In this context, AI can act as a powerful enabler to autonomy since it can give systems the
capabilities of learning from experience and reasoning so that they can autonomously de-
cide which is the best action(s) to be taken; however, there are several concerns that should
be faced which are discussed in the following of this chapter.
Within RAILS WP2 we tried to address some aspects related to autonomous trains by facing
two specific PoCs: “Vision-based Obstacle Detection on Rail Tracks” and “Cooperative Driv-
ing for Virtual Coupling of Autonomous Trains”. The first PoC was oriented at understanding
to what extent it would be possible to exploit cameras and AI to detect any kind of obstacles
on rail tracks; while the second was oriented at investigating how it would be possible to
make trains capable of autonomously adapting to the behaviour of a leading train in order
to reduce the distance between running trains and consequently improve line capacity and
efficiency.
The findings and considerations coming from the aforementioned PoCs, together with the
answers to the Roadmapping Survey introduced in the previous sections, converged into
the analysis of the topics discussed in the following of this chapter. To be specific, Sections
5.2 and 5.3 summarise and discuss the results of the Roadmapping Survey, analysing the
answers related to the topics concerning Railway Safety and Automation, i.e., “Fully Au-
tonomous Trains in Open Environments” and “Obstacle Detection Through On-board Cam-
eras and Artificial Vision”. Then, Section 5.4 highlights the needs and the steps that should
be considered in order to safely move towards AI-aided autonomous trains by taking into
account the survey’s results and the findings obtained throughout the whole RAILS project.

5.2. Fully Autonomous Trains in Open Environments

As introduced above, GoA4 has been already reached in segregated environments. Differ-
ently, the path towards the actual implementation of fully automation and fully autonomy
seems yet to be completed in open environments.
Up to date, steps have already been taken, also within the Shift2Rail programme (e.g., within
X2RAIL-4 [5]), towards the automation of open railway environments, with ATO functional-
ities being introduced in main lines while supervised by the European Train Control System
(ETCS) which manages all the safety aspects (e.g., ensures that the speed profile is re-
spected, actuates the emergency brakes, and so on) [6]. This is named ATO over ETCS
(AoE) and, interestingly, has already been tested and prototyped in Europe. Also, there
have been carried out tests evidencing that ETCS (which is a core component for the AoE)
may also be bypassed somehow to apply ATO even on non-ETCS railway lines [6]. As far
as we understood, such technologies, which we refer to as AoE for simplicity, currently allow
for upgrading main lines up to GoA2. Basically, in AoE GoA2 lines, rule-based safety1 would
be ensured by the ETCS (or other protection systems), while the managed safety2 would
be ensured by the driver who will oversee the functioning of the automatic systems. Worth
underlining, investigations have already started towards the definition of specifics and the
delineation of suitable actions to be taken in order to further extend automation functionali-
ties in main lines up to AoE GoA 3/4 [5,8].

1Achieved leveraging rules, formalisms, and protection measures aiming at defining anticipated responses to
foreseeable situations [7]

2Aiming at avoiding or mitigating non-predictable hazardous events [7]
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Within the RAILS project, we tried to understand the role that AI could have in the tran-
sition from automatic to autonomous train operation and protection (which visionary could
also ensure managed safety without the intervention of human operators). Then, through
the Rodmapping Survey, we asked several railway experts to provide us with their vision
of the current level of maturity of Fully Autonomous Trains in Open Environments, when
they expect to have fully autonomous trains operating on railway lines, and which are the
main criticalities/obstacles that must be addressed to achieve full maturity. The results are
discussed below.

5.2.1. Estimated Maturity Level and Time to Full Maturity

Figures 5.1 and 5.2 respectively report the distribution of the answers the participants gave
to the questions: considering the topic “Fully Autonomous Trains in Open Environments”, i)
“How do you estimate the current Technology Readiness Level (TRL)?” and ii) “When do
you expect the technology to be commercially available (TRL 9)?”. In the figures, IDK stands
for “I don’t know”.

Fig. 5.1. Fully Autonomous Trains in Open Environments: Estimated Maturity Level

Fig. 5.2. Fully Autonomous Trains in Open Environments: Expected Time to Full Maturity

As for the current maturity level, answers tend towards TRL6/7 indicating that these tech-
nologies have been already demonstrated in relevant environments and some working proto-
types are already available. The estimated time to full maturity, i.e., that would be needed to
complete the systems, qualify them, and prove them in operational environments, is mainly
expected to be between 5 and 10 years or beyond.
Interestingly, this prediction seems to be more or less in line with the hype cycles Gartner
realised in 2022 for “Transportation and Smart Mobility” (as reported by Thales3) and for “Ar-

3https://www.thalesgroup.com/en/markets/digital-identity-and-security/government/documents/gartner-hype-
cycle-transportation-smart-mobility
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tificial Intelligence” [9]. Autonomous Vehicles – which, in our view, may include both road ve-
hicles and rolling stock as they could share some AI technologies even if implemented differ-
ently – are going through the “Trough of Disillusionment” phase that is explained by Gartner
as follows: “Interest wanes as experiments and implementations fail to deliver. Producers of
the technology shake out or fail. Investments continue only if the surviving providers improve
their products to the satisfaction of early adopters” 4. These technologies, although poten-
tially being game-changers for the transport sector, will require at least another 10 years of
evolution before they can actually be implemented in the field.

5.2.2. Current Criticalities

To support the answers in Figures 5.1 and 5.2, participants were also asked to “indicate
the main criticalities that should be overcome” in order to move towards “Fully Autonomous
Trains in Open Environments”.
Plenty of different challenges were underlined, which can be clustered as follows:

• Safety Concerns. These include the necessity of: i) evaluating the trustworthiness of
AI systems (especially in safety-critical environments); ii) establishing mechanisms to
prove the safety of AI systems; and iii) understanding how AI systems could be verified
and validated.

• Regulations, Normative, and Legal Issues. This point is actually linked with the
previous one as one of the main aspects in this context is the need of procedures
for the certification of AI systems to prove their correctness. This problem is further
exacerbated by the complexity of defining a suitable test coverage for AI systems.

• Social Acceptance. Users may not trust autonomous trains at this specific level of
development.

• Operability Issues. These includes, among others: i) interactions among vehicles;
ii) the costs of the infrastructures; iii) the security of IT systems; iv) operational con-
straints; v) long-range obstacle detection especially with harsh weather conditions; vi)
availability, reliability, and security of communications; and vii) real-time hazards esti-
mation.

To summarise, what principal emerged from the survey is that:
• On the one hand, there are some operational constraints that should be met and that,

given the current status of development of AI system, still represent open challenges
that should be overcome before considering AI systems viable in operational environ-
ments.

• On the other hand, new standards and certification processes allowing for the eval-
uation and certification of AI systems, and thus for the identification of their level of
reliability and safety, should be formally developed.

To conclude, a direction that has been highlighted within the survey and that can be taken
to overcome the aforementioned issues would be to focus on automotive derived solutions
to accelerate the integration of AI-based applications for enhancing safety and automation;
i.e., look into automotive to understand whether transferable solutions exist as we did in [10].
Indeed, the automotive field has already identified future research directions to deal with
the explainability, ethical, and regulatory challenges related to the diffusion of AI solutions in
autonomous vehicles [11].

4https://www.gartner.com/en/research/methodologies/gartner-hype-cycle
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5.3. Obstacle Detection Through On-board Cameras and Artificial Vision

As better discussed in Section 5.4, one of the main aspects that must to be considered
when passing from automatic to autonomous operations is related to the ability of trains
of understanding what is happening within the surrounding environment. Giving trains the
capability of, among others, detecting obstacles and taking autonomous decisions on what
they should do in order to avoid or mitigate possible collisions is an extremely important
aspect that falls under the concept of managed safety discussed in Section 5.2 and would
be essential to allow trains moving without human supervision.
Obstacle detection systems typically involve multiple sensors (e.g., [12]) and exploit sensor
fusion and diversity in order to ensure, to some extent, reliability in case one or more sen-
sors (and related systems) would fail in detecting the obstacles. In the context of the RAILS
project, however, we focused on a specific subsystem involving the usage of on-board cam-
eras only, namely Vision-Based Obstacle Detection System (VBODS), which may visionary
be used as a stand-alone system to support autonomous operations in specific and con-
strained cases while being cheaper than the whole complex system introduced above.
We asked several railway experts to provide us with their vision of the current level of maturity
of VBODSs, when they expect to have fully autonomous trains operating on railway lines,
and which are the main criticalities/obstacles that must be addressed to achieve full maturity.
The results are discussed below.

5.3.1. Estimated Maturity Level and Time to Full Maturity

Figures 5.3 and 5.4 respectively report the distribution of the answers the participants gave
to the questions: considering the topic “Obstacle Detection Through On-board Cameras and
Artificial Vision”, i) “How do you estimate the current TRL?” and ii) “When do you expect the
technology to be commercially available (TRL 9)?”

Fig. 5.3. Obstacle Detection Through On-board Cameras and Artificial Vision:
Estimated Maturity Level

The most voted option is TRL 7, while the technology is expected to be fully mature in less
than 5 years. Interestingly, there may be evidence of VBODSs which are already at TRL9
and are already available to be used.
This is also in line with the prevision that Gartner made last year for Computer Vision (CV)
applications in the context of AI [9], indicating that these approaches are now within the
“Slope of Enlightenment” phase and are about to reach the “Plateau of Productivity” in less
than two years (one year from now). Clearly, CV encompasses a plethora of techniques, and
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Fig. 5.4. Obstacle Detection Through On-board Cameras and Artificial Vision:
Expected Time to Full Maturity

Vision-Based Obstacle Detection may exploit only a subset of them (e.g., object detection,
semantic segmentation, and so on). Therefore, with a specific focus on VBODSs, it would
be necessary to understand if these techniques will effectively reach an adequate level of
maturity in the following few years to be used in safety-critical environments such as railways.
Knowing that, we asked the participants to the survey to indicate which, according to their
experience, are the main issues that must be considered (or that have been already faced
for TRL9 VBODSs) in order to make VBODSs suitable and reliable for railway environments;
the results are reported below.

5.3.2. Current Criticalities

As for the wider topic of “Fully Autonomous Trains in Open Environments”, concerns were
expressed for the Certifiability and Standardization of these systems, together with the dif-
ficulties of achieving a suitable Test Coverage proving that these systems may be reliable
in almost all possible conditions. These and the other, more technical, criticalities that were
identified can be clustered as follows:

• Reliability Concerns. It seems not to be trivial, at the current level of development, to
understand to what extent these systems can be considered reliable. In this direction,
Explainable AI could help to better understand the reasoning of AI systems, but it
should be further developed.

• Implementability Issues. These include sensors costs and the need for energy-
efficient AI models, but also the problems of data availability, data completeness, and
appropriate data annotation.

• Performability Issues. These encompass, among others, the small-scale object de-
tection problem, detection distance, and the robustness of these systems to false
alarms.

• Operability Issues. These involve all the problems arising from the operational envi-
ronment, such as harsh weather conditions that could limit the visibility of VBODSs and
the diversity of the nature of the obstacles which make their behaviour and dynamic
movement difficult to understand and predict. Also, to effectively implement obstacle
detection in complex railway networks, it would be required to know the route of the
train upstream the turnouts (or switches).

In addition to these criticalities, other comments were made on the usage of on-board cam-
era sensors:

• Camera sensors are the most affected by harsh environmental and low light conditions.
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• Given trains’ speed (especially in high-speed railways) and the resulting braking dis-
tance needed to safely stop them, on-board cameras may not be sufficient to detect
obstacles well in advance.

• It is needed to know the exact distance of the obstacles from the train at each instant
in time; which is an extremely complex task to solve if only cameras are used.

Possible solutions to these problems regard the integration of on-board cameras with other
sensors (like LiDARs, radars, and so on) installed both on-board and on trackside infrastruc-
tures to better monitor railway lines even beyond “train’s visibility”. Sensor fusion introduces
diversity, potentially making the system more reliable. However, also in this case, as high-
lighted by the participants to the survey, there are still challenges to overcome including: i)
adequate and multiple validation methods to effectively evaluate obstacle detection systems
against reference standards; ii) sensors latency and calibration which could compromise the
detection (possibly, edge computing solutions could be adopted to reduce latency); and iii)
processing speed from the data acquisition to the obstacle detection.
To conclude, it has also been highlighted that AI may not be the unique solution. AI may help
to implement mechanisms oriented at detecting the dynamic of the obstacles and possibly to
dynamically adapt to changes in the environment, however, data analysis can also be done
by means of traditional techniques (e.g., image processing not based on AI) which could
be more reliable and understandable. Therefore, AI would be only part of the solution and
not the solution; both AI and traditional approaches would be required in order to achieve
effective obstacle detection systems.

5.4. Future Research Directions

At the beginning of this chapter, we introduced what would be required to move towards au-
tonomous trains in open environments; i.e., a paradigm shift from Automatic to Autonomous
systems.
In this section, we try to underline how this paradigm shift could be supported and which
would be, among others, the enabling factors and technologies that should be further inves-
tigated for the effective introduction of AI-aided Autonomous Trains in Open Environ-
ments. This is done on the basis of:

• The findings obtained while analysing the state-of-the-art (RAILS WP1 Deliverables
and Deliverable D2.1).

• The expertise acquired while working on the RAILS WP2 PoCs (Deliverables D2.2 and
D2.3).

• The recommendations identified in Deliverable D2.4.
• The results of the Roadmapping Survey.

Conceptual Shift. Current GoA levels, which indicate the presence/absence of automatic
functionalities, do not allow for the correct classification of railway lines characterised by
AI-powered autonomous behaviours. A new classification would be required to:

• Extend and support GoA levels.
• Drive the step-by-step introduction of AI-aided autonomous functionalities in railway

lines.
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To that aim, in Deliverable D2.4 and [4], we established some Grades of Intelligence (GoI)
which were built upon GoA levels to extend their coverage in order to guide, somehow, the
step-by-step integration of AI in railway lines.
Before proceeding, it is important to underline that GoIs should be considered as examples,
as suggestions on how AI could be introduced step-by-step into safety-critical railway sys-
tems; they should not be intended as a new standardised classification of railway lines. Also,
GoIs, as were conceived within the RAILS project, are not intended to replace GoA levels;
instead, GoIs are built alongside GoAs with the only intent of trying to classify AI integration
in autonomous railways functionalities.
In this section, we re-propose the GoI classification introduced in our previous WP2 deliv-
erables by extending their description and providing indications on the steps that should
be performed to gradually introduce AI for autonomous trains from limited/no autonomy
(GoI1) to full autonomy (GoI3/4). GoIs also provide an increasing level of difficulty for the
integration of AI functionalities, given the safety-critical nature of some functionalities and
the need for advanced information and management systems. From this perspective, GoI
levels (shown in Fig. 5.5) can be summarised as:

Fig. 5.5. GoI Levels.

• GoI1 - Limited/No Autonomy: AI is not introduced in any safety-critical train driving
functionality. Instead, AI can be adopted as a tool to optimise or support ATS function-
alities (e.g., optimise train scheduling) introducing a conceptual shift from Automatic to
Intelligent Train Supervision (ITS).

• GoI2 - Partial Autonomy: AI is used to improve ATO functionalities (GoI2.1) or, al-
ternatively, ATP functionalities (GoI2.2). Hence, GoI2.1 and GoI2.2 are in mutual ex-
clusion and represent two different modalities through which partial autonomy can be
achieved:
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– GoI2.1: AI is introduced to extend ATO functionalities by applying intelligent and
adaptive behaviour in order to optimise passenger comfort, energy consumption,
and line capacity. AI-powered ATO is referred to as Intelligent Train Operation
(ITO). In this specific case, protection systems (e.g., ATP or equivalent) are nec-
essary to monitor ITO actions and apply protection if needed.

– GoI2.2: AI-aided ATP, i.e., Intelligent Train Protection (ITP), supports, extends, or
potentially replaces traditional ATP. If the ATP is not available (e.g., in old railway
lines or when ATP failures oblige to partial supervision), ITP could replace ATP by,
e.g., automatically recognising signals and/or obstacles. If ATP is available, ITP
can be a useful complement to detect events that are not managed by ATP.

GoI2.2 is way more challenging to achieve than GoI2.1 especially given safety, certi-
fiability, and reliability concerns as pointed out in Sections 5.2.2 and 5.3.2. Basically,
ITP adopts AI to directly manage safety aspects. Therefore, this must be certified as
SIL4; however, to the best of our knowledge, this seems not to be possible at this level
of development of AI technologies.

• GoI3 - Full Autonomy: both ITO and ITP are implemented to allow trains to operate in
full autonomy. However, at this level, no advanced learning and adaptation capabilities
are considered (e.g., online learning). For instance, ITP’s artificial vision systems can
be trained only once, e.g., to detect on-track obstacles, and never updated in real-time.

• GoI4 - Full Autonomy in Fully Connected Environments: as GoI3, both ITO and
ITP are implemented, but they would be also required:

– Advanced learning and adaptive capabilities to constantly learn in real-time how
operations can be further optimised.

– A fully-connected and dynamically updated ecosystem with extremely reliable
connections so that trains can be constantly updated with information related to
safety and operability aspects also coming from other assets on the same railway
track (e.g., other trains, level crossings, stations).

– Advanced analysis mechanisms giving trains the capability of predicting the health
status of their on-board components so that driving decisions can be taken by also
considering what would happen to on-board components if a specific action would
be taken.

The latter aspect – typically referred to as Vehicle Health Monitoring (VHM), Intelligent
VHM in this case – is something that can be achieved also at lower GoIs; however,
it is particularly required at this level as it, together with ITP, could give trains all the
relevant information to consciously take safer actions.
From this perspective, GoI4 should be supported by higher levels of fog/cloud intelli-
gence (introduced afterwards) by using external AI models for big data analytics, such
as those enabled by Digital Twins.

Basically, the introduction of AI, as it is happening as far as we know, should proceed grad-
ually starting from non-safety-critical functionalities or from those which are not required to
be SIL4. In the latter cases, the concept of safety envelope [13–15] can be exploited to
wrap AI functionalities with railway systems that are already certified as SIL4 in a sort of
system-over-the-loop paradigm.
As happens with ATO over ETCS, where the ETCS manages all the safety aspects of the
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automatic train and supervises the actions taken by the ATO, the same principle can be
applied to ITO systems. The ITO, at GoI2.1, would introduce AI to, for example, improve line
capacity or energy efficiency while the ATP (which can be rated as SIL4) manages all the
safety aspects. The same would go for ITS and, for example, the interlocking system. For
further details on the concept of ATP as a safety envelope refer to Deliverable D2.4 and [4].

Structural Needs. In order to efficiently integrate AI systems in railways and exploit their
maximum potential, we think that it would be necessary to arrange them according to a spe-
cific structure categorising the field of action and the assets/functionalities the AI systems
should focus on. We formalised this by introducing, in Deliverable D2.4, some Levels of In-
telligence (LoIs) which were drafted upon the concepts of Edge, Fog, and Cloud Computing;
for the sake of simplicity, these LoIs are recalled in Table 5.3.

Table 5.3: Levels of Intelligence
Level of Intelligence Description

Edge Intelligence (EI)

AI systems mounted on-board the assets (e.g., trains) would be in charge of
implementing local autonomy (e.g., on-board obstacle detection). They may
be characterised by possible limitations in terms of computing power, due to
constrained devices, but they would also be advantaged in terms of response
times and data security, due to shorter communication links.

Fog Intelligence (FI)

AI systems at this level would monitor a cluster of assets and manage their
interconnections in order to achieve a comprehensive optimisation of a
railway sub-system.
For example, fog intelligence may represent trackside control where capacity
optimisation (e.g., Virtual Coupling) can be orchestrated based on a larger
knowledge of what is happening within a whole railway line.

Cloud Intelligence (CI)

AI systems deployed at this level would aim at elaborating big amount of data,
possibly coming from multiple assets installed worldwide, in order to collect
information and knowledge to be either shared with the AI systems operating
at lower LoIs or exploited to implement more comprehensive systems.
For example, a failure prediction system can be trained with data coming from
multiple installations of the same asset. These would most likely include more
information about potential failures compared to data obtained by monitoring
a single asset only.

These levels would then act as guidelines to set up suitable architectures for AI-aided Au-
tonomous Trains. Inspired by the analysis of the State-of-the-Art and solutions developed
within the Automotive sector (analysed in the first phase of the project - WP1 - and in Deliv-
erable D2.1), we tried to formalise an example architecture (Fig. 5.6) containing the modules
that, in our view, would be required at GoI4. The example architecture shows the modules
that would be required from the perspective of AI-powered autonomous trains. Certainly,
other modules could be introduced to properly manage an entire railway network where
all assets would, visionary, behave autonomously. In addition, at lower GoIs, other mod-
ules/systems would be required, e.g., the ATP at GoI2.1.
The layers and components in Fig. 5.6 are discussed herein:
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Fig. 5.6. An Example Architecture Towards GoI4 Railway Lines

• Communication Module: This module is transverse with respect to the LoIs. In
Fig. 5.6, the various components of this module are explicitly indicated at the Edge,
Fog, and Cloud Intelligent Levels. Notably, any device would have a communication
component. T2X and I2X respectively stand for Train-to-Everything and Infrastructure-
to-Everything communication. Communication between railway assets would be crit-
ical for the implementation of AI-powered autonomous driving functionalities. For ex-
ample, Virtual Coupling (as analysed in Deliverables D2.3 and D2.4) requires trains
to constantly and reliably communicate with both other trains and trackside infrastruc-
tures to establish the optimal driving policy. Disruptions or delays in communication
would potentially lead to unpleasant consequences given the reduced distance be-
tween trains.

• Cloud Intelligence: Modules at this level would be oriented at storing, managing, and
analysing data coming from multiple instances installed/operating over multiple railway
networks:

– I2X Communication: This component would allow other modules at the CI level
to communicate with the modules at lower levels. We marked it as I2X, i.e., CI
modules could potentially communicate with FI modules but also directly with EI
modules installed in physical entities like trains or other assets. However, further
and more in-depth analysis should be made to understand if it would be efficient
or counterproductive to let CI modules capable of directly communicating with EI
modules bypassing, de facto, the FI level. A trivial example is the following one.
Within the Data Analysis (discussed below), a specific AI system – which is in
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charge of predicting anomalies for component X of a train – has been optimised
based on data coming from the same component installed on hundreds of trains.
Hence, the system deployed at the EI level which is in charge of monitoring that
component must be updated. Whether the update should be done by directly
passing information from the CI to the EI level or by passing the information first
at the FI and then at the EI level is beyond the scope of this deliverable. This is
just to provide an example architecture to show the components (and their role)
needed to move towards GoI4.

– Data Storage: persistently store data and information passed by the Data Man-
agement.

– Data Management: the functionalities of this module are oriented, but not limited,
to: i) receiving data from FI (and, maybe, EI) modules and passing them to the
Data Storage; ii) elaborating data to make them homogeneous (if needed); iii) col-
lecting the results from the Data Analysis; iv) passing relevant information/updates
to modules at lower levels. Basically, its role is to pre-process data (if needed) and
sort data among modules at lower levels, Data Storage, and Data Analysis.

– Data Analysis: this is the core module of the CI level. Basically, within this mod-
ule, there would be all the components oriented at training, testing, and updat-
ing AI systems. By leveraging data from the Data Storage, AI systems at this
level would be trained on data coming from hundreds of instances installed over
multiple railway networks. In this way, AI systems like anomaly detectors would
probably be more efficient as they have more information from which to extract
knowledge. Otherwise, for example at the EI level, systems should be updated by
taking into account information coming from a single (or a few) components only
which would not be so efficient, especially because it would be required a long
time before a sufficient amount of data would be collected.

• Fog Intelligence: Modules at this level would be oriented at managing all the assets
composing a specific track (or, more in general, a specific railway network). There-
fore, it would be possible to have multiple parallel FI Levels under a unique CI Level.
Layers/components at the FI Level that would be required for Autonomous Trains are:

– I2X Communication: As for CI, this component manages the communication
between FI modules and CI-EI modules.

– Trackside ITP: this module would adopt AI to manage protection considering data
coming from multiple assets and traditional protection systems (e.g., ATP). For ex-
ample, if a train is approaching a level crossing that could potentially be defective,
the ITP would then decide whether the velocity of the train must be adjusted to
ensure safety.

– Trackside ITO: ITO at the FI level would manage all the information required by
the various trains on a specific track to move autonomously. Taking as an example
the Virtual Coupling PoC (discussed, in detail, in Deliverables D2.2 and D2.3), ITO
would compute in real-time the desired trajectory that each train should follow in
order to allow Virtual Coupling. Hence, the desired trajectory is computed at this
level and sent to the On-Board ITO (discussed below) of each train which should
actuate the driving policy.

– Intelligent Train Supervision (ITS): this would extend ATS functionalities by ex-
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ploiting AI to efficiently optimise (or maximise) railway line utilisation and aver-
age throughput by providing appropriate train routing solutions (e.g., promptly re-
sponding to disruptions, optimising scheduling/rescheduling, and so on).

– Infrastructure Health Monitoring (IHM): this module would manage all predic-
tive maintenance aspects that are crucial for the safe running of autonomous
trains. The components of this module would monitor all the assets deployed
on the rail track in order to predict possible malfunctions that could compromise
safe operability.

– Digital Twin: each asset of the rail track would be managed through the corre-
sponding Digital Twin (DT) which is managed by this module. Then, all the mod-
ules discussed above, in addition to direct communications with physical assets
could also leverage DTs to analyse the status of the assets (without interfering
with them) to take decisions that would optimise operations and, at the same
time, increase the level of safety. For example, assuming it would be possible to
generate DTs for both trains and level crossings, these can be exploited at the FI
to promptly adopt countermeasures in case of assets’ failure. Additional details
are given in Deliverables D3.4 and D4.4.

• Edge Intelligence: In Fig. 5.6, as mentioned above, we mainly focused on an archi-
tecture including modules that would be essential – to the best of our knowledge – to
make trains capable of operating autonomously. Assets 1 to N would either be other
trains or railway assets like intelligent level crossings; also, in the case of other types of
assets, they could include other components/modules which are not discussed below.
The principal modules that a train should include are:

– T2X Communication: this component, as discussed for the others at the FI and
CI levels, is required to transmit/receive information to/from other trains, assets,
or FI modules.

– Sensing: this module would manage all the sensors on-board the train (e.g.,
cameras, LiDARs, IoT sensors of on-board components, etc.) and apply pre-
processing when required.

– Vehicle Health Monitoring: implements mechanisms that give trains the capa-
bility of self-analysing the health status of on-board components (i.e., predict fail-
ures, detect anomalies).

– Environmental Perception: implements mechanisms that give trains the capa-
bility of autonomously analysing the surroundings (e.g., obstacle detection).

– On-Board ITP: exploits data coming from Vehicle Health Monitoring, Environmen-
tal Perception, and FI modules to check whether and which protection mecha-
nisms should be applied (e.g., apply emergency brakes if an obstacle is detected,
adjust speed if an onboard component is about to fail, etc.).

– On-Board ITO: exploits data coming from other entities at the EI level (other
trains, assets) and other modules at both the EI and FI levels to decide the optimal
driving action to take.

Towards Full Autonomy. As also mentioned above, the road towards GoI4 should be
travelled step-by-step. The modules in Fig. 5.6 are those that would be necessary to create
a fully-connected environment to let autonomous trains (or assets) receive all the relevant
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information to properly decide the best action to take at a given instant without affecting
safety; however, not all of them are required at lower GoIs. Fig. 5.7 shows the modules that
would be required for each GoI level. Important to underline, Automatic Train Systems (Table
5.2) are not bypassed : for example, given the current level of development of AI systems,
ATP would be extremely crucial especially at GoI2.1 to manage possible failures of the ITO.
Therefore, the Automatic Train Systems should be considered as potentially mandatory at
each GoI with very few exceptions, e.g., in secondary railway lines which are not equipped
with ATP but could be equipped with some ITP functionalities (e.g., obstacle detection) to
visionary improve safety when these technologies would be mature enough.
As shown in Fig. 5.7:

• At GoI1: none of the modules of the example architecture are strictly required but for
the communication module which is crucial at any GoI. Any Automatic Train System
(ATP, ATO, ATS) can be implemented, indeed, we can have GoA4-GoI1 metro lines.
However, GoI1 is characterised by the complete absence of ITP and ITO.

• At GoI2.1 ITO (both on-board and trackside) is implemented, but ITP is absent. Hence,
all the modules that would allow ITO to properly operate or to be further optimised
should be installed. Starting from traditional systems, ATP is a must as it should be
used as the Safety Envelope for the ITO to ensure safety. As an example, the ITO could
implement a functionality based on AI to intelligently compute the optimal train speed
to save energy and ensure passenger comfort; in case the computed speed would
exceed the braking curve computed by the ATP, this would take the proper action to
protect the network.

• At GoI2.2 ITP (both on-board and trackside) is implemented, but ITO is absent. All the
modules that would support ITP operations are required. For example, the Environ-
mental Perception module is required because it would implement operations such as
vision-based obstacle detection/signal recognition or any other functionality oriented at
monitoring the environment looking for potential hazards. These are crucial function-
alities for On-Board ITP. The main challenge here is represented by the certification of
AI systems that should be rated SIL4 before being introduced in operational environ-
ments.

• At GoI3: both ITP and ITO are present, together with all the systems that are required
to make their interaction possible. This would open for advanced functionalities like
Virtual Coupling which has been deeply discussed in Deliverables D2.2, D2.3, and
D2.4. Basically, one of the main threats to Virtual Coupling is the certifiability of AI
systems that, at GoI3, is supposed to be overcome. In addition, besides the function-
alities that Virtual Coupling implements (e.g., computation of an optimal speed profile
by leveraging the current speed and position of each train to account for relative braking
distances). At this level, Virtual Coupling could also benefit from valuable alternatives,
e.g., computing the distance between trains basing on cameras, lidars, and other sen-
sors which, as said, belong to the ITP.

• At GoI4: all modules indicated in Fig. 5.6 should be present, including, Vehi-
cle/Infrastructure Health monitoring (VHM, IHM), advanced Data Analysis capabilities
at the CI level, and Digital Twins. The role of all these modules has already been
discussed above in this document.

Important to mention, there are some modules that are not required at specific GoIs but that
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Fig. 5.7. Required Modules per GoI Level.

could be anyway implemented to add more efficiency and safety. For example, the IHM and
VHM are crucial at GoI4 to create a fully-connected environment, but it can be implemented
also at lower GoIs to intelligently check and continuously monitor railway assets.
To conclude, below we list a series of milestones that should be reached in order to move
towards full autonomy. These milestones result from the survey and the research activities
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performed when developing the two WP2 PoCs, therefore, there may be other important
milestones to be analysed in the future that are not included herein. We clustered these
milestone into the macro areas of Regulatory / Safety Needs and Technical Needs:

• Regulatory / Safety Needs:

– Secure IT Systems;
– Available and Reliable Communications;
– Extremely Reliable Vehicle Interactions;
– Reliable Train Position Computations;
– Exact Knowledge of Train Paths;
– ATP as Safety Envelope;
– Explainable and Stable AI Models;
– Ad-hoc Verification and Validation Methods (e.g., Digital Twins-in-the-Loop);
– Ad-hoc Standards and Regulations.

• Technical Needs

– Data Availability and Correctness;
– Energy-Efficient AI Models;
– Real-Time Computations and Hazards / Obstacles Identification;
– Reliable Hazards Detection Mechanisms;
– Reliable and Cost-Effective On-board / Trackside Sensors (Low-Latency and Cor-

rectly Calibrated Sensors);
– Effective Sensor Fusion;
– Integrated Cognitive Digital Twins for Infrastructure / Vehicle Health Monitoring.
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6. Integrating AI in Railway Maintenance and Inspection

6.1. Introduction

As analysed during the first phases of the project (WP1), the Railway Area of Maintenance
and Inspection has been the most investigated by researchers and practitioners. Several
solutions have been proposed to shift from corrective to predictive maintenance.
To generalise, inspections are typically conducted on the field by human operators. If we
take as an example the railway track inspections, these are typically conducted during the
night (when the traffic is suspended) and through costly maintenance vehicles/tools which
are adopted to scan all the components of the railway line to check for defects/failures.
This is just one of the multiple inspection activities (e.g., trains’ components checking, level
crossing inspections, etc.) that are conducted on a scheduled basis (i.e., once every week,
month, etc.) which seems not to be that efficient, especially when it comes to promptly
detecting defects so that they would not harm either passengers and other railway assets.
Indeed, malfunctions could happen between two subsequent inspection activities leading to
unpleasant consequences.
With the advent of AI, it has been noticed that it would be possible to start monitoring assets
in a continuous way and to shift from scheduled inspection and corrective actions to continu-
ous monitoring and predictive maintenance. Several extremely promising approaches have
been proposed in the literature [16–18] to move towards this direction. Following this line,
within the RAILS project, we have focused on two PoCs to investigate how AI could be in-
troduced within railway assets smart maintenance: “Smart Maintenance at Level Crossings”
and “AI-based Rolling Stock Rostering”. The first PoC was oriented at understanding to
what extent it would be possible to exploit AI (specifically Deep Learning) and non-intrusive
sensors (e.g., cameras and microphones) to continuously monitor the health status of a level
crossing; while the second was oriented at exploring the capability of exploiting Reinforce-
ment Learning techniques (e.g., Deep Q-Networks) into rolling stock circulation scheduling
and predictive maintenance tasks, in order to optimise and enhance the current non-flexible
maintenance policy and paradigms.
The findings and considerations coming from the aforementioned PoCs, together with the
answers to the Roadmapping Survey introduced in the previous sections, converged into
the analysis of the topics discussed in the following of this chapter. To be specific, Sections
6.2 and 6.3 summarise and discuss the results of the Roadmapping Survey, analysing the
answers related to the topics concerning Railway Maintenance and Inspection, i.e., ”Intel-
ligent Audio-Video Technologies for Non-intrusive Infrastructure Inspection” and ”Intelligent
Digital Twins for Predictive Maintenance of Railway Assets”. Then, Section 6.4 provides con-
siderations about the introduction of AI into Railway Maintenance and Inspection activities
by taking into account survey results and the findings obtained throughout the whole RAILS
project.
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6.2. Intelligent Audio-Video Technologies for Non-intrusive Infrastructure In-
spection

Most railway assets/systems are involved in safety-critical functionalities. Their continuous
monitoring and the prediction of possible failure/defects may allow for safer operability of the
whole sector. In order to achieve that, adequate sensors must be installed to collect relevant
information. From a very high-level perspective, sensors may be subdivided into two main
macro-categories:

• Intrusive Sensors, i.e., sensors which are installed directly on the component or within
the system that is intended to be monitored. Examples are accelerometers, voltmeters,
and so on.

• Non-Intrusive Sensors, i.e., sensors that can be installed externally to the system with-
out interfering with its operability. Examples are microphones and cameras, which have
been the focus of this topic and the Level Crossing PoC.

Assets deployed recently may be already equipped with the adequate intrusive (but expected
by design) IoT sensors. However, those that have been deployed decades ago may be not.
Concerning the latter, in order to implement predictive maintenance (or similar application),
actions would be required to equip them with the adequate set of sensors allowing for their
intelligent monitoring. Two main paths can be identified: i) install intrusive sensors with
the risk of running into re-approval processes (especially in case of safety-critical assets);
and ii) adopt, when possible, non-intrusive sensors to potentially extract about the same
information that would be extracted by means of intrusive ones but without interfering with
assets operations. Clearly, the latter is viable only in case the defects/anomalies to be
detected would be recognisable by means of non-intrusive sensors; for example, cameras
can be adopted to detect visible defects (e.g., cracks, missing objects, and so on), while
microphones can be leveraged to identify anomalies that can be recognised by detecting
specific audio patterns (e.g., understanding whether the warning bell of a level crossing is
ringing as it should and is properly audible).
Within the RAILS project, we investigate the second path by taking Level Crossings as ref-
erence assets. Then, through the Rodmapping Survey, we asked several railway experts to
provide us with their vision of the current level of maturity of Intelligent Audio-Video Tech-
nologies for Non-intrusive Infrastructure Inspection, when they expect these technologies to
be mature enough for operational uses, and which are the main criticalities/obstacles that
must be addressed to achieve full maturity. The results are discussed below.

6.2.1. Estimated Maturity Level and Time to Full Maturity

Figures 6.1 and 6.2 respectively report the distribution of the answers the participants gave to
the questions: considering the topic “Intelligent Audio-Video Technologies for Non-intrusive
Infrastructure Inspection”, i) “How do you estimate the current Technology Readiness Level
(TRL)?” and ii) “When do you expect the technology to be commercially available (TRL 9)?”.
In the figures, IDK stands for “I don’t know”.
As for the current maturity level, TRL5 has been the most voted, however, there has also
been a wide consensus around TRL7 and even TRL9 meaning that, in some circumstances,
these technologies are already implemented in the field. The estimation of the time to full
maturity is in line with the TRL predictions, indicating that Intelligent Audio-Video Technolo-
gies for Non-intrusive Infrastructure Inspection will be potentially available in less than 5
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Fig. 6.1. Intelligent Audio-Video Technologies for Non-intrusive Infrastructure Inspection:
Estimated Maturity Level

Fig. 6.2. Intelligent Audio-Video Technologies for Non-intrusive Infrastructure Inspection:
Expected Time to Full Maturity

years.

6.2.2. Current Criticalities

To support the answers in Figures 6.1 and 6.2, participants were also asked to “indicate
the main criticalities the should be overcome” in order to implement “Intelligent Audio-Video
Technologies for Non-intrusive Infrastructure Inspection”.
A number of criticalities were identified, which can be clustered as follows:

• Implementability Issues. This includes all the possible issues that could affect the
actual implementation of intelligent monitoring systems. Two sub-clusters can be iden-
tified:

– Sensors-oriented Issues, including, among others: i) the costs of the sensors
and their installations and, consequently, the investments that Infrastructure Op-
erators should face to sensorize railway assets; ii) the need for dedicated sensors
for each specific task ; and iii) the maintainability of sensors, for example, cameras
whose lenses can become dirty over time.

– Task-oriented Issues, encompassing, but not limited to: i) the variety of possible
visible defects, i.e., the fact that assets could result to be defective in disparate
modes which may not be all accurately catalogued; ii) the different geometrical
and perspective alignment of defects/anomalies, e.g., some defects are visible
from certain camera angles but not from others; and iii) the availability of de-
fective/faulty samples. All these factors clearly depend on the specific task that
should be addressed, nonetheless, they should be always taken into account as
they could heavily affect the implementability, and consequently the performance,
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of AI systems.

• Performability Issues. This includes all the factors that could reduce the accuracy
and the reliability of AI models. For example, some AI models are not capable of
correctly detecting small-scale defects or there may be some noise patterns that
could lead to miss-classifications / miss-detections.

In addition to that, there are a few other aspects that came out from the survey which could
obstruct the implementation of such intelligent maintenance systems:

• First, as partially mentioned above, the implementation of a specific AI system depends
on the specific task it has to address. Therefore, these technologies should be most
likely investigated use-case by use-case. The difficulties, in this context, are related to
the fact that specific data configurations may be identified for each piece of equipment
to be monitored.

• Second, the introduction of these technologies may be easier on new assets (as al-
ready mentioned at the beginning of this chapter) rather than old ones. Most likely
because the former could be equipped with adequate sensors starting from the design
phase.

• Third, it should be found the right balance between on-board and trackside equipment.
Also, standardised ways would be required to prepare railway assets in order to facili-
tate the identification of defects/malfunctions.

• Fourth, validation and certification procedures would be a central point also for main-
tenance applications. In addition to that, dedicated AI models should be developed
instead of using open source models (e.g., YOLO).

• Lastly, if infrastructure inspection will become reliant on AI, especially if there would not
be any human-AI collaboration but the processes would be fully automatised, building
public trust in these systems will be crucial. Transparent communication about the
benefits, limitations, and safety measures of intelligent audio-video technologies can
help to increase public acceptance.

6.3. Intelligent Digital Twins for Predictive Maintenance of Railway Assets

From a theoretical perspective, a Digital Twin (DT) can be defined as a digital representation
of a physical asset which is connected to and evolves with its physical counterpart thanks
to IoT monitoring devices [19]. Instead, an AI-aided (or Intelligent) Digital Twin (AIDT) is a
DT that integrates AI functionalities to, for example, learn how to behave like the physical
counterpart, or pre-processing data coming from IoT sensors. This kind of DTs could open
opportunities like the possibility of obtaining a digital version of an asset that can be solicited
with various inputs (even potentially hazardous) to understand what would happen in the
real world under given circumstances (without hurting anyone or anything).
Through the Rodmapping Survey, we asked railway experts to provide us with their vision
of the current level of maturity of Intelligent Digital Twins (with a specific focus on predictive
maintenance of railway assets), when they expect this technology to be mature enough for
operational uses, and which are the main criticalities/obstacles that must be addressed to
achieve full maturity. The results are discussed below.
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6.3.1. Estimated Maturity Level and Time to Full Maturity

Figures 6.3 and 6.4 respectively report the distribution of the answers the participants gave
to the questions: considering the topic “Intelligent Digital Twins for Predictive Maintenance
of Railway Assets”, i) “How do you estimate the current TRL?” and ii) “When do you expect
the technology to be commercially available (TRL 9)?”

Fig. 6.3. Intelligent Digital Twins for Predictive Maintenance of Railway Assets:
Estimated Maturity Level

Fig. 6.4. Intelligent Digital Twins for Predictive Maintenance of Railway Assets:
Expected Time to Full Maturity

As for the current maturity level, differently from the other topics discussed in this document,
in this case, a number of participants abstained. All other results are more or less equally
distributed from TRL2 to TRL9. However, from the discussion, it emerged that this would
be an extremely relevant technology to further innovate railway maintenance activities and it
would be potentially available in less than 10 years.

6.3.2. Current Criticalities

As for the previous topic, to support the answers in Figures 6.3 and 6.4, participants were
also asked to “indicate the main criticalities that should be overcome” in order to implement
“Intelligent Digital Twins for Predictive Maintenance of Railway Assets”.
Also in this case, different challenges were identified which can be clustered as follows:

• Implementability Issues. The process of development of DTs is quite challenging,
especially if we consider the heterogeneity of multiple instances of the same railway
asset. Hence, it may be challenging to build general and reproducible DTs that could
suit for multiple railway assets. In addition, another challenge is posed by the fact that
the DT software should be maintained over time. Continuing, DTs require to be con-
stantly updated in real-time in order to properly represent their physical counterparts;
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this would result into massive data acquisitions that could not be trivial to manage. To
conclude, also the training of AI algorithms may introduce complexities especially if
those must continuously learn from new data and adapt to changing operating condi-
tions.

• Representativity Issues. Correctly representing the reality through a DT is challeng-
ing (reality gap). It may be not trivial to properly estimate model parameters, also,
linking real and virtual world may be costly.

• Interoperability Issues. The same component developed by different stakeholders
may have different characteristics depending on the stakeholder itself. The same would
go for DTs developed for a specific component, which could be different depending on
the specific stakeholder that developed it. Interoperability among vendors and stake-
holders is then one of the key challenges to be overcome for the effective development
of intelligent DTs. To potentially overcome interoperability issues and, thus, effectively
leverage DTs, standardised identification methods should be identified.

Another aspect that emerged from the survey is related to data availability and sharing
among various stakeholders. Basically, sharing operational data with component producers
would allow them to deliver extra value as they could optimise practices and development
processes. In this context, data sharing models would promote the integration of DT within
railways.
To conclude, interestingly, some of these challenges are in line with those we identified within
our works on AIDTs for railway assets maintenance [19, 20] which include interoperability,
connectivity, data privacy and security, and scalability (i.e., the problem of integrating and
managing multiple DTs as a unique and larger DT).

6.4. Future Research Directions

Basing on our research and the survey results, the Maintenance and Inspection area is one
of the most investigated for the application of AI approaches in railways. Different solu-
tions have been proposed to support the paradigm shift from corrective maintenance and
scheduled inspections to predictive maintenance and continuous monitoring, with some of
these technologies that seem to have already reached a certain level of maturity allowing
them to be identified as TRL9. Nonetheless, as also emerged from the survey, there are so
many different maintenance tasks that specific considerations can be made only use-case
by use-case.
From a high-level perspective, however, it is possible to identify three main “maintenance
types” centred on AI that are sufficiently general and could apply to any railway asset:

• Type 1: No AI is involved.
• Type 2: AI is used to predict/detect possible assets’ failures/defects.
• Type 3: AI is used also in combination with DTs to intelligently model assets’ behaviour

and perform in-depth analyses on assets’ evolution.

Important underlining, these types have to be considered from the perspective of “AI intro-
duction in railway maintenance applications”. For the sake of clarity, it is not said that DTs
are based on AI, therefore, in this classification, they can also be considered within Type 1
and 2 but, in these cases, they are not supported by AI functionalities.
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The gap between Type 1 and Type 2 is already being filled, different approaches have been
investigated to introduce AI in railway maintenance applications [17, 18] (as also analysed
in the previous phases of the RAILS project); also, as emerged from the survey, in some
specific cases this gap seems to have been already closed (i.e., these technologies have
reached TRL9).
Conversely, the gap between Type 2 and Type 3 seems to deserve further investigation.
Within the RAILS project, we tried to formalise some concepts in relation to AIDTs which we
summarise below with the hope that they could be relevant to support this shift and future
research.

Contextualising AI-aided Digital Twins. From a high-level perspective, AI and DTs can
“support each other” in two main ways: i) through DTs it would be possible to generate
synthetic data (e.g., by adopting injection approaches [21]) to train and test AI models; and
ii) AI could extend DT functionalities from data pre-processing to the deployment of intelligent
services (e.g., predictive maintenance) [20]. In this document, as mentioned above, we refer
to the latter as “AI-aided Digital Twins” (AIDTs), i.e., DTs whose capabilities (part of them)
are empowered by AI.

DT Design and Development Guidelines. By taking advance of the literature on DT de-
sign methodologies, in [20], we formalised some step-by-step guidelines that could support
DT design for railway predictive maintenance applications. Herein, we recall and briefly sum-
marise these guidelines (schematized in Fig. 6.5); reference [20] can be visioned for further
details.
The guidelines are provided as a workflow including twelve main tasks: the first six tasks
(in blue in Fig. 6.5) relate to the design of the DT and its service(s) - predictive mainte-
nance, in this case - while the other tasks (in green in Fig. 6.5) identify the development and
deployment of the service. The tasks are:

• Requirement Specification. Steps within this task identify the primary informa-
tion/requirements that will be at the basis of the DT design including the reference
industry, the purpose of the DT (together with functional requirements), the as-
set/process to be replicated, and the technologies required for the DT development.

• Process Planning. This task identifies the functionalities and the properties of the
Physical Twin (PT) that should be modelled through the DT. Then, it defines what
data are required for this purpose and, consequently, the communication infrastructure
required to get the data from the PT.

• Architectural Design. Steps within this task define architectural patterns and identify
components for the design of the DT. Also, if the DT should be dynamic – i.e., its
architecture would adapt over time to system changes – ad-hoc architectural solutions
are identified.

• Digital Representation. This task defines how the PT should be modelled to replicate,
as faithfully as possible, all its properties and behaviours.

• Digital Twinning. This is the core task for DT design. It defines the DT infrastructure
by generating the PT models (whether manually or automatically), making sure that
these models and other possible components are properly integrated, and tuning and
validating them.
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Fig. 6.5. Guidelines for the Design and Development of AIDTs. Excerpted from [20].
DT = Digital Twin — PT = Physical Twin
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• Service Planning. Once the DT is implemented, this task designs the service(s) that
the DT should provide. The example, in this case, is the implementation of a predictive
maintenance application that leverages the DT. Therefore, the learning paradigm
(supervised/unsupervised) and the specific learning approaches are identified.

• Data Flow. This creates the bidirectional connections between the DT and the PT
leveraging the communication infrastructure identified above. Then, it creates, indeed,
the data flow by combining the stream of operational and environmental data with his-
torical ones (i.e., those already stored) and saves everything into appropriate storage
solutions (e.g., local/cloud).

• Conversion. This task pre-processes (e.g., clean, fuse, modify, homogenise) all col-
lected data.

• Training Process. Steps within this task are oriented at training the learning algo-
rithm(s) identified above in this framework on the pre-processed (if required) data and
then, once the predictive model has been properly characterised, to deploy it to be
used at run-time.

• Prediction Process. The predictive model is executed at this stage and used to anal-
yse real-time data coming from the PT to check whether malfunctions are going to
occur. Predictions are then processed to be properly visualised.

• Decision Process. On the basis of the predictions, this task defines the actions to
perform on the PT. Actions are then performed manually by human operators or auto-
matically by the system itself.

• Evaluation. At the end, the DT such implemented (together with the service(s) it
provides) is evaluated by means of PoCs. Although metrics exist to evaluate prediction
models, there seems to be evidence of the fact that analysing DTs through PoCs could
lead to better evaluations [20].

For further details on the various tasks and steps, please refer to [20].

Preliminary Architecture for AI-aided Digital Twins. In addition to the guidelines, we
also tried to formalise an example architecture for AIDTs, highlighting the main components
that should be involved and where/how AI could contribute. The architecture is shown in
Fig. 6.6; the Physical Assets represents the PT for which the DT is created.
The example architecture involves the following layers:

• Physical Layer. This contains the components that interconnect the physical asset
to its DT. For example, sensors allowing real-time data collection and actuators imple-
menting the decisions taken at the upper layers directly on the physical asset.

• Data Layer. This layer deals with data pre-processing and storage, Knowledge Man-
agement, and data Presentation (e.g., through Human-Machine Interface (HMI)). Then
all information stored in this layer is used by the upper layers to perform analyses (e.g.,
predictions) and provide services. Worth mentioning, the AI Pre-Processing is one of
the core components for AIDTs. Briefly, when data are collected they can be both pre-
processed through Basic Elaborations (e.g., clean, homogenisation, etc) and through
advanced AI processing methods. This would open opportunities to, e.g., extract fur-
ther data from those collected through sensors.
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Fig. 6.6. An Example Architecture for AIDTs. Excerpted from [20].

As an example, while working at the Level Crossing PoC, we leveraged video data
collected through cameras and an AI algorithm to extract the movement that the barrier
traces over time. In other words, we started with video data and extracted other types of
data that could then be used by the upper layer to predict, for example, the Remaining
Useful Life (RUL) of the barrier.

• Virtual Layer. This layer includes the core components that are required to generate
and manage the virtual representation of the physical asset. At this level, AI can be
adopted within the Reasoning component – e.g., to extract useful information from
data – and within System Modelling – e.g., to model the behaviour of the physical
asset. Then, this layer also involves a Feedback component that serves to propagate
the decisions taken at this and the Service Layer towards lower layers (e.g., to the
Presentation component to show analyses in a human-comprehensible way).

• Service Layer. This layer implements the prediction and decision processes. For
example, in the context of railway assets maintenance, this layer would include Infer-
ence/Prediction and RUL Prediction Modelling capabilities to detect the health status
of the asset’s component and possibly analyse their behaviour to estimate the RUL.
Then, basing on these analyses, the Alerting component will, indeed, rise alerts to
support maintainability, while the Maintenance Scheduling component will optimise
the scheduling of maintenance activities.

To conclude, it is worth mentioning that the guidelines and the example architectures have
been drawn in the specific context of “AIDTs for railway assets maintenance” and are not
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meant to be exhaustive. There may be steps or architectural components that are missing,
but that could be as well important to effectively implement AIDTs. The aim of this analysis
was to highlight the possibilities that AI would introduce if integrated within DTs, given that,
as also emerged from the survey, this could actually be an important achievement towards
the improvement of railway maintenance strategies. Hence, we tried to formalise some
concepts that would hopefully be valuable for future research in this direction.
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7. Integrating AI in Railway Traffic Planning and Management

7.1. Introduction

During the initial stages of the project (WP1), we found that the Railway Traffic Planning and
Management Area is the second most studied area by scholars and professionals. To fore-
cast primary and secondary delays, methods such as mathematical and stochastic models
have been extensively utilized. Yet, as the amount of data grows, it becomes increasingly
challenging to use historical operational data and incident records for numerical predictions
of a train’s delay status. The intricacy of the factors influencing train delays makes it diffi-
cult for these traditional methods to effectively forecast delays. Furthermore, any substantial
aggregation of delays can negatively impact the whole railway network, compromising op-
erational efficiency and punctuality. After a thorough review of previous studies, we found
an effective approach to combine them, providing a fresh viewpoint on train delay prediction
and incident analysis.
In recent years, while the frequency of initial delays in rail services has remained stable,
secondary, or reactive, delays have been on the rise, presenting difficulties in understanding
and management. The after-effects of a reactive delay hinge on the interactions between
various trains and the characteristics of the railway network. A domino effect can occur
where one reactive delay triggers others, potentially affecting numerous trains. Traditional
methods struggle to predict these impacts and resulting patterns accurately. Hence, an
alternative method is required to better understand the root causes of reactive delays and to
estimate the potential effects of changes on service delivery.
With the advent of AI, it has been noticed that it would have been possible analysis the rail-
way delays and make predictions in a more intelligent way and to shift from mathematical and
stochastic optimization algorithms to AI technique-based prediction/analysis models. Sev-
eral extremely promising approaches have been proposed in the literature [16–18] to move
towards this direction. Following this line, within the RAILS project, we provided a compre-
hensive analysis of the methodological and experimental PoCs conducted for the two case
studies, ”Graph Embedding based Primary Delay Prediction” and ”Big Data on Incident Attri-
bution Analysis”. The primary objective of the first PoC is to create a structural deep network
representation for the stations in a railway network, which can be used in modelling the highly
non-linear dependencies present in network topology. To achieve this, a unique deep learn-
ing model called the ”Structural Deep Network Embedding approac” was proposed, drawing
inspiration from successful applications of deep learning methods presented in prior works
[22]. while the second was oriented at exploring the capability of exploiting Big Data for
interactive delay attribution visualisation and Graph Neural Network techniques for predict-
ing potential propagation links. We intend to train a link prediction model that can predict
whether a propagation link should exist between two nodes, enhancing our understanding
of delay causation and propagation.

7.2. Train Delay Prediction Using Graph Embedding

The objective of this study’s delay prediction is to forecast the average delay for an unob-
served train service, drawing on delay data collated from historical railway operations. This
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takes into account specific characteristics of individual railway stations and overarching net-
work structures, such as station connectivity, the weightage of specific routes, and varying
network densities across regions, among others. As a train’s delay status at a particular
station could be influenced by adjacent stations, it’s crucial to understand the network con-
nections among stations. For instance, delays are more likely to impact neighboring stations
as the geographical proximity between them decreases.
Serves as an efficient technique for dimensionality reduction in the field of computer science,
machine learning. The fundamental principle behind embedding is to position connected
nodes nearer to each other in vector space, thereby preserving the structural relationships
inherent in the original network. While each vector value lacks explicit interpretation, it par-
tially characterizes a particular station. The utility of this representation becomes apparent
when comparing the similarities between two stations. In this context, the SDNE method
significantly condenses vital information, enabling efficient and reliable vector operations for
machine learning-based predictors compared to traditional mathematical algorithms.
Moreover, we propose to incorporate the derived hyper node embedding vectors (i.e.,
nodes/stations in sequence along a specific route) into a route embedding vector. This step
would further condense and aggregate structural information of the target railway network,
reducing feature dimensions. The anticipated route embedding representations should meet
the following benchmarks:

• Regardless of a specific route’s length, the resulting route embedding vectors must
maintain a uniform size

• The route representations should distinctly encapsulate the characteristics of the entire
route, including the density of stations en-route, their sequence, and congestion level
on the route

• Route embedding vectors should effectively preserve both local and global character-
istics

7.2.1. Estimated Maturity Level and Time to Full Maturity

Figures 7.1 and 7.2 respectively report the distribution of the answers the participants gave
to the questions: considering the topic ”Train delay prediction using Machine Learning”, i)
“How do you estimate the current Technology Readiness Level (TRL)?” and ii) “When do
you expect the technology to be commercially available (TRL 9)?”. In the figures, IDK stands
for “I don’t know”.
As for the current maturity level, TRL7 has been the most voted, however, there has also
been a wide consensus around TRL4 and even TRL9 meaning that, in the most circum-
stances, these technologies are already successfully validated and implemented in the field.
The estimation of the time to full maturity is in line with the TRL predictions, indicating that
Machine Learning-based Technologies for Train delay prediction will be potentially available
in less than 5 years or already been commercially available in some particular operational
environments.

7.2.2. Current Criticalities

To support the answers in Figures 7.1 and 7.2, participants were also asked to “indicate the
main criticalities that should be overcome” in order to move implement ”Graph Embedding
and machine learning techniques into train Primary delay prediction”. A number of criticali-
ties were identified from the live event results regarding the WP4 question ”what are the main
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Fig. 7.1. Train Delay Prediction using Machine Learning:
Estimated Maturity Level

Fig. 7.2. Train Delay Prediction using Machine Learning:
Expected Time to Full Maturity

criticalities need to overcome in terms of ’train delay prediction using machine learning’?”.
Which can be clustered as follows:

• Data Issues. This covers all the possible issues that could affect the quality of chosen
datasets. Specifically, it includes the overall quality of raw data, data acquisition, and
data availability.

• Accuracy criterion An accurate model or acceptable prediction accuracy, especially a
high consistency between the estimating delay levels and the ground truth of real-world
situation, is the another significant concerns that identified from the live chat from the
event participants. That is, good estimates, accurate models, quality of field workers
estimate, and accuracy, etc.

• Practical application Issues. This includes all the factors that could hinder the im-
plementation of proposed relevant delay prediction models. For example, condition
monitoring and the intended use of AI models. Some AI models are not capable for
real-time forecasting or there will be some trains with no passengers that could lead
to miss-classifications/non-optimal prediction. Evaluating major (rare) disruptions is
crucial as it allows for robust contingency planning and efficient resource allocation,
thus minimizing the substantial impact these infrequent events can have on the entire
railway network and its operation.
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7.3. Railway Incident Attribution Analysis Using Big Data Analytics

Gaining a comprehensive understanding of how delays at specific sites affect the wider
railway network is essential for both the infrastructure provider and train operators. The
current TRUST 1 system, which offers delay attribution data for those trains that experience
a delay of at least 3 minutes. Delays under this threshold are automatically assigned to the
pertinent railway company and Network Rail without conducting an exhaustive investigation
into the delay causes.
Several intricate factors such as timetable clashes and track access rights influence the
scope and duration of delay spread throughout the network. Predicting these nonlinear
spatio-temporal interactions accurately with conventional methods can prove challenging.
Similarly, different railway disruptions and unusual incidents can have diverse triggers, with
some sharing common root causes and others not. Utilizing traditional statistical analy-
ses or descriptive models to examine all observed relationships or triggers might not accu-
rately depict the delay propagation chain. The conducted PoC is composed of two main
parts. Firstly, we leveraged Big Data techniques to interactively visualize historic train delay
records, which enables recreating the process of how disturbances, disruptions, or unfore-
seen events initially caused and then spread delays. Secondly, we aspire to comprehend
how these disturbances morph into noticeable primary delays and then disseminate along
certain lines/routes of the network. Through learning from these patterns, we were intended
to predict if a delay will happen or spread between particular locations, timings, and train
services.
In summary, we applied Big Data for interactive delay attribution visualization and Graph
Neural Network techniques for predicting possible propagation links. We planned to train a
link prediction model capable of forecasting if a propagation link should exist between two
nodes, thereby improving our understanding of delay origins and spread.

7.3.1. Estimated Maturity Level and Time to Full Maturity

Figures 7.3 and 7.4 respectively report the distribution of the answers the participants gave
to the questions: considering the topic of “Railway incident attribution analysis using big
data analytics”, i) “How do you estimate the current TRL?” and ii) “When do you expect the
technology to be commercially available (TRL 9)?”
The most voted option regarding is TRL 4, while the technology is expected to be fully mature
between 5 and 10 years. Notably, there may be evidence of that incident attribution analysis
is not sufficiently considered or investigated neither in the level of conceptual formulation or
experimental PoC demonstration.
This is also in line with the prevision that generated from a latest successful implementation
of ’network effects’ in the context of delay propagation/cascading model [23], which indi-
cates the approach using ’Epidemiological Sir Models’ is now confirmed with the adequacy
of the solutions and helped quantify the influence of primary delays and the amount of time
reserve in the schedules of trains of various categories on the reliability of the standard
train schedule. However, while the relevant technology is not fully mature or already been
partially implemented in some aspects, there are still areas for improvement. For instance,
the quality and completeness of data collected can significantly impact the accuracy of in-
cident attribution. Therefore, continuous efforts are required to improve data collection and

1https://safety.networkrail.co.uk/jargon-buster/trust/
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Fig. 7.3. Railway Incident Attribution Analysis Using Big Data Analytics:
Estimated Maturity Level

Fig. 7.4. Railway Incident Attribution Analysis Using Big Data Analytics:
Expected Time to Full Maturity

processing techniques. Also, while machine learning and AI can help analyze complex re-
lationships and patterns, the interpretation and understanding of these findings still heavily
rely on human expertise. Clearly, propagation tree encompasses a plenty of critical infor-
mation, and more than incident attribution task may exploit the outputs of it (e.g., further
rolling stock rescheduling, track resource allocation, etc). Therefore, it would be necessary
to understand if these techniques will effectively reach an adequate level of maturity in the
following few years to be used in safety-critical environments such as railways. Knowing that,
we asked the participants to the survey to indicate which, according to their experience, are
the main issues that must be considered in order to make incident attribution analysis vali-
dated and reliable for railway environments in both practical and theoretical way; The results
are reported below.

7.3.2. Current Criticalities

• Data Issues. It seems not to be trivial and rare - to get enough reliable disrup-
tion/incident data and if the obtained data correct on the quality largely determines
to what extent the developed systems can be considered reliable. On the other hand,
ensuring data interoperability and adhering to common data standards across various
railway systems and operators is necessary to facilitate data exchange and analysis.

• Implementability Issues. These include choosing of advanced models and the need
for a agreement on a goal of attribution, but also the problems of how to conduct an ef-
fective model validation. In some extreme circumstances, large-scale disruptions and
complexity of disruptions with several causes may destroy the successful implementa-
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tion regrading a meaningful analysis built by the past normal incident records.
• Performability Issues. Comparing incident attribution analysis results between differ-

ent rail operators can establish benchmarks for safety and performance. Such com-
parisons can drive a culture of continuous improvement and healthy competition. In
addition, Fast recalculation of results based on frequent changes in line status may
also hinder the performance of the analysis results due to the large number of vehicles
circulating.

In conclude, the concept of railway incident reasoning/attribution analysis is not new, but the
technology and methodologies to conduct such analysis are continually evolving, becoming
more sophisticated and accurate. In conclusion, the technical maturity of railway incident
reasoning/attribution analysis is not relatively advanced, but there are promising directions
for improvement, especially in areas like data quality, integration of diverse data sources,
interpretability and accessibility of complex models, and the application of newer analytical
techniques.

7.4. Future Research Directions

Based on our study and survey results, Traffic Planning and Management (TPM) ranks as
the second most explored area for AI application within the railway industry. Various solu-
tions have been suggested to aid the transition from traditional mathematical programming
algorithms and stochastic optimization to AI or machine learning-based analysis and predic-
tion. Some of these technologies appear to have achieved a level of maturity suitable for
testing in specific lab environments. However, as highlighted in the survey, the diversity of
TPM tasks means that each use-case must be individually evaluated.
From a broader viewpoint, we can identify three primary categories of ”delay predic-
tion/attribution types” rooted in AI that could be generally applicable to any railway traffic
management task:

• Type 1: AI is not involved.
• Type 2: AI is utilized to predict or analyze potential delay-contributing factors.
• Type 3: AI, combined with optimization algorithms, intelligently plans process behavior

and conducts thorough analyses on delay evolution.

It’s crucial to note that these categories are from the perspective of ”AI introduction in railway
planning and management applications.” For clarity, optimization algorithms may not neces-
sarily be AI-based, so they could fall within Type 1 and 2, but in these instances, they are
not enhanced by AI features. The gap between Type 1 and Type 2 is narrowing, as various
strategies have been explored to implement AI in railway maintenance applications. In some
specific instances, as suggested by the survey, this gap appears to be already bridged (i.e.,
these technologies have achieved TRL9). In contrast, the gap between Type 2 and Type 3
seems to warrant further investigation.
Transfer Learning Transfer learning is a powerful machine learning technique that can be
highly beneficial in the context of railway networks. Essentially, transfer learning allows us
to take knowledge gained from one railway network and apply it to another. This capabil-
ity is especially useful when data availability is limited for a specific region or for a newly
constructed rail network.
In a typical railway network, there are many common elements: trains operate under similar
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physical and operational constraints, and they interact with the environment in comparable
ways. This means that a machine learning model trained on one network can learn valu-
able lessons about how delays occur, how traffic should be managed, or how maintenance
schedules should be optimized. However, each railway network also has its unique features:
differences in track layout, train schedules, passenger demand, and regional weather pat-
terns, among others. These distinct characteristics can make it challenging to apply a model
trained on one network directly to another.
This is where transfer learning shines. Instead of starting from scratch, transfer learning
allows us to take a pre-trained model (trained on one network) and fine-tune it on another
network. This way, we can retain the knowledge about general railway operations, while
also learning about the specific features of the new network. For example, if we have a well-
performing model trained on a comprehensive railway network in Europe and want to apply
it to a newly built network in Asia with limited data, transfer learning would be a suitable
approach. We would start with the model trained on the European network and then fine-
tune it with the available data from the Asian network. The European model would provide a
strong starting point, and the fine-tuning would adapt the model to the specific characteristics
of the Asian network. Therefore, transfer learning techniques can play a crucial role in
overcoming data limitations and accelerating the deployment of AI-based solutions in railway
networks, ultimately leading to more efficient and reliable railway operations.
Ensemble methods Ensemble methods are powerful tools in machine learning that com-
bine the strengths of multiple models to improve prediction accuracy and robustness. The
idea behind ensemble methods, such as stacking or bagging, is that a group of models
working together can often produce more accurate and reliable predictions than any single
model working alone.
When it comes to predictive tasks, such as the railway delay prediction or traffic flow fore-
casting in our context, individual machine learning models may exhibit unique strengths and
weaknesses depending on the specifics of the data and the task. For instance, some models
might perform well with certain types of data but poorly with others, or they might excel in
capturing specific types of patterns but miss others. Ensemble methods help mitigate these
weaknesses by combining the outputs of multiple models. The collective wisdom of the en-
semble is often more reliable and accurate than the prediction of any individual model. This
is particularly true when the models in the ensemble are diverse, i.e., they make different
types of errors due to different underlying algorithms or parameter settings. For example,
bagging (short for bootstrap aggregating) involves creating multiple subsets of the original
data, training a separate model on each subset, and then combining their predictions. This
method can significantly reduce the variance in the predictions, leading to more robust re-
sults. On the other hand, stacking involves training multiple models on the same data, and
then training a ’meta-model’ to make a final prediction based on the predictions of the indi-
vidual models. This allows the ensemble to learn how best to combine the individual models’
predictions to achieve the highest accuracy.
In the context of railway operations, ensemble methods could be used to improve the ac-
curacy and reliability of delay predictions, maintenance scheduling, traffic flow forecasting,
and many other tasks. By leveraging the strengths of multiple models, railway operators can
gain a more accurate and comprehensive understanding of their network’s behavior, leading
to more efficient and reliable operations.
Benchmarking and Performance Comparison Benchmarking and performance compari-
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son are vital components of a strategy aimed at achieving continuous improvement and high
standards in railway operations. By comparing incident attribution analysis results between
different rail operators, it is possible to establish benchmarks for safety and performance that
can serve as targets for improvement. Benchmarking allows for an objective evaluation of
a rail operator’s performance against industry best practices or against the performance of
their peers. This comparative analysis can highlight gaps in processes, systems, or tech-
nologies, and thus provide insights into areas where improvements can be made.
For instance, if one operator consistently attributes fewer incidents to equipment failure than
other operators, this might indicate superior maintenance practices or more advanced equip-
ment. Such findings could prompt other operators to reevaluate their maintenance strategies
or invest in equipment upgrades. Conversely, if an operator attributes more incidents to hu-
man error, this might highlight areas for improvement in training or operational procedures.
Moreover, performance comparisons can stimulate healthy competition among rail opera-
tors. This drive to improve can lead to better safety outcomes, more efficient operations,
and higher quality service for passengers. It encourages operators to not only meet the
established benchmarks but to strive for excellence and set new industry standards.
By providing a clear picture of where each operator stands in relation to their peers, bench-
marking and performance comparison can play a crucial role in driving a culture of con-
tinuous improvement in the railway industry. It provides an impetus for constant evolution,
adaptation, and enhancement of operational standards, ultimately leading to safer, more
efficient railway networks.
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8. Other Findings and Directions from the Roadmapping Survey

8.1. Introduction

Besides the topics discussed in the previous chapters – which were conceived in the context
of RAILS WP2, WP3, and WP4 – we also identified two other directions that could potentially
benefit the introduction of AI in railways: i) “Mixed-Reality Technologies to Support AI Test-
ing”, and ii) “Sharing Relevant Datasets for Benchmarking AI Technologies for Railways”.
Hence, we asked the participants in the survey to share their toughs about these directions.
Lastly, we also asked them to indicate the “Most Promising Future Railway Applications”
that, according to them, could revolutionise the rail sector in the next 10 years.

8.2. Mixed-Reality Technologies to Support AI Testing

As introduced in Section 6.3 and discussed in our Deliverable D2.4, Digital Twins (DTs) are
digital models that evolve, over time, with the corresponding physical asset. Potentially, it
would be possible to create copies of a DT, representing the physical assets at a given time
instant, and stress them with various inputs to predict the potential evolution of physical
systems and/or generate data that can be used to train AI models. In addition to that, DTs
can also support the development, validation, and testing of railway systems [24]. They could
help to overcome, at least in the first phases of development, some challenges introduced
by on-field tests including elevated costs and time required, limited scenarios, and high risk
in case of failures.
Intelligent Digital Twins would introduce several opportunities in this direction as these kind
of DTs not only evolve with their physical counterpart but would also be able of simulating
their behaviour. They can be exploited, especially if combined with Mixed Reality (MR), to
evaluate the behaviour of systems similar to what happens with Hardware-in-the-Loop. As
spotted within the Automotive field, MR has shown great potential in linking physical vehicles
with their digital counterparts making both of them susceptible to events occurring either in
the real or in the virtual world [25, 26]. As a simple example, this can be exploited in the
rail sector to test the physical reaction of a train (running on an obstacle-free track) and
its obstacle detection system to obstacles (of any kind and in any position) which are not
physically on the tracks but are simulated in the virtual world (see Fig. 8.1).
We asked survey’s participants whether this technology would be useful for the rail sector
and when they expect it to be fully mature to be actually implemented; results are reported
in Figures 8.2 and 8.3 respectively.
According to the survey’s results, such technologies would be extremely useful in railways,
also because AI models must demonstrate robustness and adaptability to different condi-
tions and Mixed-Reality could enable testing under a wide range of conditions (e.g., light
changes, user interaction, etc.). In addition, about half of the participants believe that Mixed-
Reality Technologies will be available in less than 5 years.
Given the attention this topic caught during the survey, we believe that Mixed-Reality Tech-
nologies and Digital Twins would deserve further investigation.
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Fig. 8.1. DT-in-the-Loop and Example of Mixed Reality.

Fig. 8.2. Can “Mixed-Reality Technologies to Support AI Testing” be useful for railways?

Fig. 8.3. Mixed-Reality Technologies to Support AI Testing:
Expected Time to Full Maturity

8.3. Sharing Relevant Datasets for Benchmarking AI Technologies for Railways

As emerged from the research conducted in our past deliverables, data availability and qual-
ity are two of the main issues affecting the development of AI models in railways; not only
because without data it is not possible to train AI algorithms, but also because AI solutions
oriented at solving the same problem but trained and tested on datasets with different char-
acteristics are not trivial to compare. Hence, in Deliverable D2.4, we proposed a series
of recommendations to try to overcome these issues which converged, eventually, into “A
Vision of a European Railway Lab for AI Applications”, whose data-centric vision is shown
in Fig. 8.4 for the sake of simplicity. For further information on this topic, please refer to
Deliverable D3.4.

GA 881782 Page 53 | 59



Then, we asked the survey participants if the sharing of datasets to train/test AI models and
to be used as benchmarks (i.e., to compare and possibly elect the most performing AI solu-
tions) would be useful for the development of AI applications in railways. As expected, almost
all of them believe that such an approach would be very/extremely useful (see Fig. 8.5).

Fig. 8.4. A data-centric view of an AI European Lab for joint research in railways

Fig. 8.5. Can the “Sharing Relevant Datasets for Benchmarking AI Technologies for
Railways” be useful for railways?

Although some publicly available datasets exist (e.g., [18, 27, 28]), two of which have been
made publicly available in the context of this project (i.e., Level Crossing Warning Bell
Dataset1[29], and a dataset for Vision-Based Obstacle Detection on Rail Tracks2), data shar-
ing is not always feasible as pointed out by the participants to the survey. Different aspects
and issues should be considered:

• Nowadays, Data are valuable assets for companies; too much profitability is linked
to the possession and the analysis of data. Therefore, it would not be convenient,
commercially speaking, to disclose them.

• Data may be confidential and/or sensitive. Hence, mechanisms to ensure privacy
should be taken into account.

• Data quality, completeness, and fairness must be ensured. Also, eventual biases
that could compromise the effectiveness of AI systems should be properly managed.

• Data diversity may also be an issue. Collecting and integrating data from multiple
sources may be challenging. Nevertheless, diversity may also introduce opportunities;

1https://zenodo.org/record/7945412
2https://zenodo.org/record/7924875
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for example, integrating data from multiple sources (which could have different char-
acteristics) could help to reduce the bias characterising data coming from a specific
source.

These issues would be challenging to overcome, however, as also witnessed by the survey’s
results, we think that data sharing could be essential for the fast take-up of AI applications
in railways. Perhaps, as discussed in Deliverable D2.4 and as also emerged from the sur-
vey, railway stakeholders’ partnerships could foster data sharing, drive innovations towards
advanced AI technologies, and create mutually beneficial collaborations.

8.4. Most Promising Future Railway Applications

To conclude, we asked the participants of the roadmapping survey to indicate which, ac-
cording to them, would have been the “most promising AI applications to railways in the
next 10 years” that deserve deeper investigation in the next few years. The answers are
reported/clustered herein:

• Autonomous driving and driver advisory systems.
• AI-driven signalling systems (optimise train movements, reduce delays, and improve

safety by dynamically adjusting signals based on real-time conditions).
• Passenger companions and applications oriented at providing customers with targeted

information (e.g., disruptions) and improving passengers comfort.
• AI-powered sensors and Computer Vision applications for visual inspection to contin-

uously monitor railway infrastructure to detect anomalies, defects, and potential safety
hazards in real-time.

Together with these, two additional directions were given by the participants. These are not
strictly related to the railway domain, however, are essential for the integration of AI:

• Explainable AI (XAI) approaches. In safety-critical applications, XAI would play a cen-
tral role. Understanding the reasoning of AI systems will improve trustworthiness and
facilitate human oversight.

• Dealing with public acceptance and awareness. Public acceptance and awareness
could be another issue for the introduction of AI in railways. Educating customers about
the benefits and safety measures of AI technologies could help overcome resistance
and build support.
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9. Conclusions

The RAILS project has undertaken a comprehensive roadmapping process to explore the
integration of AI within various aspects of the railway sector. The project’s journey has
encompassed diverse realms, including safety, automation, maintenance, inspection, and
traffic planning and management. Within each realm, the project conducted assessments
of the scientific, industrial, and regulatory landscapes, outlined guidelines for transferring
AI approaches from other sectors, and proposed pilot case studies to develop and experi-
ment with innovative applications. Proofs-of-concept have been developed within the pilot
case studies with the aim of identifying the required shifts and providing recommendations
for effective and fast uptake of AI techniques in railways. From the roadmapping activities
has emerged that the railway industry is keeping up with the times in the usage of artificial
intelligence, appearing to be in step with the possibilities it offers, although several issues
still remain. The project has produced valuable knowledge and pinpointed specific research
directions towards autonomous trains,enhanced safety, and optimized operations, so con-
tributing to shaping the future of railways.
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ficial intelligence public datasets for railway applications,” Infrastructures, vol. 6, no. 10,
p. 136, 2021.
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