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Executive Summary

This deliverable proposes innovative AI approaches to address the problems and challenges
emerged from the methodological proof-of-concepts reported in Deliverable D4.2, in order
to investigate the adoption of learning techniques and other AI methods for enhanced rail
traffic planning and management. On the basis of the objectives, research questions, and
AI techniques identified in the previous deliverable for two pilot case studies, experimental
proof-of-concepts are provided to explore the technical feasibility of specific railway func-
tionalities through the use of AI approaches transferred from other transportation sectors.

To this aim, the document addresses the following themes for each case study: i) a technical
description of the proposed innovative methods, highlighting the problem statement to solve
and the learning techniques which are going to be leveraged; ii) the definition of the training
phase for the learning approaches, which could be conducted exploiting selected datasets,
as well as through the use of ad-hoc simulation platforms; iii) the description of the validation
procedure to show the effectiveness of the proposed strategies in concrete operational
scenarios; iv) a preliminary discussion of the results to highlight possible benefits and
drawbacks of the innovative approaches.

A description of the background for each case study is addressed is Section 1; the main ob-
jectives of the deliverable are detailed in Section 2, while the content of the two experimental
proof-of-concepts is reported in Section 3.
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Abbreviations and acronyms

Abbreviations / Acronyms Description
WP Work Package
IPX Innovation Programme X
AI Artificial Intelligence
GDPR General Data Protection Regulation
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PCS Polar Coordinates system
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SDNE Structural Deep Network Embedding
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ML Machine Learning
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MLP Multilayer Perceptron
NLP Natural Language Processing
KNN K-Nearest Neighbour Algorithm
BRS British Railway System
ORR Office of Rail and Road
TRUST Train Running Under System TOPS
TOPS Total Operations Processing System
RSSB Rail Safety and Standards Board
TDA Train Delay Attributor
DA Delay Attributor
API Application Programming Interface
DAB Delay Attribution Board
PSS Performance System Strategy
SGD Stochastic Gradient Descent
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1. Background

The present document constitutes the Deliverable D4.3 “WP4 Report on experimentation,
analysis, and discussion of results” of the Shift2Rail JU project “Roadmaps for AI integration
in the Rail Sector” (RAILS). The project is in the framework of Shift2Rail’s Innovation
Programme IPX. As such, RAILS does not focus on a specific domain, nor does it directly
contribute to specific Technical Demonstrators but contributes to Disruptive Innovation and
Exploratory Research in the field of Artificial Intelligence within the Shift2Rail Innovation
Programme. The successor of the Shift2Rail Joint Undertaking is currently the Europe’s
Rail Joint Undertaking (EU-Rail) established by Council Regulation (EU) 2021/2085 of 19
November 2021.

The RAILS Workpackage WP4 investigates the adoption of learning techniques and other
AI methods for enhanced rail safety and automation. The present deliverable is consequent
to the results reported in Deliverable D4.2, in which methodological proof-of-concepts have
been provided for two selected case studies: “Graph Embedding based Primary Delay
Prediction”, and “Big Data on Incident Attribution Analysis”. The first one aims to predict
train primary delay times by optimised feature engineering, especially in how to represent
train routes effectively using advanced approaches such as graph embedding. As to the
second case study, the main goal is to provide proper impetus to the current delay attribution
analysis, as well as proactively respond to the Steering Group’s promising view scope.
The disadvantages of one-hot encoding in representing train routes are identified which
have motivated our embedding based approach in the first case. For the second case
study, we have chosen to focus on further automating the attribution process of cascading
delays in order to explore the potential application of AI approaches to this process and to
bridge the present communication gap between the corporate and industrial sectors. Our
goal is to train a link prediction model, which, given two nodes, forecasts the existence or
absence of a propagation connection between them. During the interactive delay attributing
visualisation and possible propagation link prediction sub-tasks, respectively, Big Data and
Graph Neural Network approaches are introduced.

The following step is therefore to support the theoretical proof-of-concepts proposed in De-
liverable D4.2 with experimental results. This could give an answer to the research questions
and the expected results emerged in the previous deliverable, and could represent a further
step towards the definition of a benchmark for future research inspiration.
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2. Objective

This document, in line with the previous deliverables, deals with the following objectives of
the RAILS project:

• Objective 4: Development of methodological and experimental proof-of-concepts;
• Objective 5: Development of Benchmarks, Models and Simulations.

In particular, two pilot case studies have been selected, namely, “Graph Embedding based
Primary Delay Prediction”, and “Big Data on Incident Attribution Analysis”; for each of
them, methodological proof-of-concepts have been addressed to study the feasibility of
AI methods in the railway field, and some learning approaches have been identified as a
potential solution to develop their respective railway functionalities.

On the basis of the considerations made in Deliverable D4.2, the main goal of this deliver-
able is to define innovative AI models for the considered case studies to be evaluated via
test and validation activities, in order to understand how and if the AI approaches identified
during the previous tasks can support and enhance rail traffic planning and management.
To this aim, it focuses on the following objectives:

• the definition of detailed AI models based on the selected learning approaches;
• the description of the learning process of the proposed methods through a training

phase, which can be carried out exploiting specific datasets;
• the validation of the proposed models to show their effectiveness in synthetic and real-

world operational scenarios;
• a preliminary analysis of the results, to highlight the possible benefits and drawbacks

of the proposed techniques.
It is worth highlighting that this study is not intended to give an exhaustive answer to a
specific problem; it is instead meant to be a step towards the acquisition of the necessary
knowledge to understand the potentiality of AI in railways, and to drive the rail sector to-
wards a vision of AI-enabled traffic planning and management. In this direction, the main
object of the next deliverable will be an in-depth analysis to identify gaps and opportunities,
weaknesses and strengths emerged from each case study, with the final aim of defining
technology roadmaps towards the effective adoption of AI in the rail sector.
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3. Introduction

Deliverable D4.3 reports the validation activities of the solutions and approaches described
and deeply analysed in Deliverable D4.2. It focuses on the analyses and experiments
conducted applying the selected AI techniques to the pilot case studies identified in
Deliverable D4.1 based on both synthetic and real-world scenarios. Hence, this deliverable
provides meaningful insights and information on the validity of the research results and
the feasibility of the approaches in real settings. The heart of this document consists of
two main chapters, addressing the above mentioned issues for the two selected pilot case
studies: Chapter 4 is devoted to “Graph Embedding based Primary Delay Prediction” and
Chapter 5 deals with “Big Data on Incident Attribution Analysis”.

The two chapters share the same structure: a brief introduction constitutes Sections 4.1
and 5.1; a detailed description of the proposed AI models is provided in Sections 4.2 and
5.2; the selection of specific datasets as well as the development of a simulation platform
or experiment environment for training and validation purposes is described in Sections
4.3 and 5.3; the training phase together with the validation of the proposed approach in
concrete operational scenarios are deeply analysed in Sections 4.4, 4.5 and 5.4; the results
of the validation phase are shown in Sections 4.6 and 5.5; finally, a preliminary discussion
of the potential advantages of the proposed approaches is addressed in Sections 4.6 and
5.5.

A critical examination of the work and of the results obtained in this Deliverable, also against
the current state-of-the-art in railways, will be the object of the next Deliverable D4.4 (“Re-
port on identification of future innovation needs and recommendations for improvements”).
Specifically, the latter will report lessons learned, weaknesses and strengths shown by of
each exploited technology, technical and implementation recommendations, unaddressed
issues, innovation needs, with the aim of identifying technology roadmaps for AI integration
in the rail sector.
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4. Graph Embedding based Primary Delay Prediction

4.1. Introduction

As we introduced in the previous deliverables [1] [2], the purpose of this case study is to
estimate the overall degree of primary delay level within a certain time in the future on an
individual train service basis, based on data from various periods in the railway’s operating
history, and taking into account the static characteristics of each serving (pass-by or dwell)
station, as well as the structural network characteristics (i.e., connectivity between these
stations, route weight, and network density for various areas). The Structural Deep Network
Embedding (SDNE) algorithm was created as an effective dimensionality reduction tool
in computer science. This method has been refined and upgraded in this case study for
interpreting station dependencies and structural correlations. That is, a similarity network
is constructed for a set of D-dimensional nodes based on their neighborhood information,
and each node of the graph is then embedded into a d-dimensional vector space, where
d ≪ D. The main idea behind embedding is to keep related nodes closer to one other in
vector space so that the original network’s structural relationships can be preserved. The
main goal of this concept is to create an N-dimensional vector for each railway station,
with each element representing the scalar value on a specific vector direction in Euclidean
space. We also propose combining the obtained hypernode embedding vectors (i.e.
nodes/stations distributed sequentially in a particular route) into a route embedding vector,
which compresses and aggregates more structural information of the target railway network,
reducing the dimensions of available features.

The varied aspects of railway punctuality have been the subject of various studies. A
number of distinct circumstances can result in delays. According to a thorough investigation
[3], unanticipated disruptions like power and signal system outages, rolling stock problems,
and bad weather, result in significant delays, while imposed constraints such as temporary
speed restrictions, lengthy engineering projects, or crew shortages typically result in minor
delays. Sometimes, one train company’s delayed services may cause delays for other trains
either at the same station or at neighboring stations. Which is called delay propagation.
Secondly, when delays propagate, they can cause operational conflicts between trains that
are adjacent to each other. This can disrupt the train operation plan and threaten the safety
of trains operated by other companies. These conflicts are known as timetable conflicts.
Thirdly, there are minor disruptions that the system may not detect or record, normally
known as ”disturbances.” These disturbances can often be resolved during train operations
by providing a margin of time or running allowance. In this primary delay prediction case, we
mainly investigate sub-threshold delays (disturbances) and those delays above the defined
threshold but not caused by pre-planned disruptions (e.g. closed track due to maintenance
works). Also, we limit our scope within the directly triggered delay however we do not intend
to explore the delay propagation mechanism or occurrence of secondary delays. They
will be left in the next chapter 5 for discussion. A primary delay prediction model for the
Hong Kong subway system, which evaluates the interaction between external infrastructure
defects and prospective congestion shown in the study of [4]. It statistically recovers the dis-
tribution of infrastructure-caused delays at each subway station using the fixed-parameter
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maximum likelihood estimation. [5] also performed several statistical analysis towards
arrival delays, departure delays, dwell time, and route section occupation time, by means
of the S-plus software tool. The results show that delay times for trains often follow normal
or negative-exponential distributions, which can be used to create better timetables and
more accurate predictions of delays using historical data. However, subsequent studies are
supposed to develop appropriate models for predicting how train delays spread throughout
stations and networks. A timed event graph-based model was presented in [6] for predicting
running times and arrival times of punctual and delayed trains as decision support for
dispatchers to demonstrate the dependencies of running times and dwell times on current
delays and periods of the day. [7] investigated the association between train delays and
severe weather conditions by collecting and analysing a three-month dataset of weather
along the Beijing-Guangzhou line, China’s busiest train route. They applied a machine
learning-based gradient tree boosting algorithm to predict the delay mins at each station for
train services.

The Structural Deep Network Embedding (SDNE) graph embedding algorithm was first cre-
ated as an effective dimensionality reduction tool in the computer science field by [8]. The
main idea behind embedding is to keep related nodes closer to one other in vector space
so that the original network’s structural relationships can be preserved. The main goal of
this concept is to create an N-dimensional vector for each railway station, with each ele-
ment representing the scalar value on a specific vector direction in Euclidean space. Each
value in the vector has no discernible significance, yet it does represent a characteristic of a
certain station in part. When we wish to compare how similar two stations are, such a rep-
resentation comes in handy. In this regard, the SDNE approach considerably compresses
the fundamental information, making vector operations simpler and faster than traditional
mathematical procedures. We also propose combining the obtained hyper-node embedding
vectors (i.e., nodes/stations distributed sequentially on a specific route) into a route em-
bedding vector, which compresses and aggregates more structural information of the target
railway network, reducing the dimensions of available features. The following requirements
must be met by the expected route embedding depictions:

• Regardless of the length of a specific route, the obtained route embedding vectors
must be uniform in size – this makes them more convenient to use as input features
for subsequent prediction tasks.

• The route representations can explicitly reflect the characteristics of the entire route,
including the density of en-route station cluster, the sequence of these stations, and
the degree of congestion on this route.

• Local and global characteristics can be effectively preserved by route embedding vec-
tors.

4.2. Model Description

The main goal of the entire methodology framework is to acquire a structural deep network
representation. In order to effectively capture the extremely non-linear structure, a unique
deep model called the ”Structural Deep Network Embedding approach” was proposed to
learn the station representation in a railway network. This model is based on the most
recent successful applications of deep learning methods that were originally derived from
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[8] and which have been shown by [9–12] that it potentially has strong representational
capabilities when dealing with a variety of data types.

There is, however, no concrete evidence showing that such an attempt on a public transit
system, notably within a train system, has been made. In Figure 4.1, the suggested SDNE
framework is shown. This framework uses the original railway network characteristics as
input for the encoder-decoder layers, whose detailed structure includes the defining of first-
order and second-order proximity and the identification of connectivity status between any
two nodes. In order to update the resulting embedding vector to satisfy the lowest overall
loss costs during training, loss functions corresponding to each proximity in the output layer
will provide the encoder-decoder with the optimized parameters. As a result of this, each
node in the network is given its final low-dimensional embedding representation.

Fig. 4.1. The flow-charted SDNE framework

4.3. Dataset Generation

The proposed dataset is provided by TransPennine Express1, which is a famous train oper-
ating company in Britain. This data source is only used for the research purpose, applied to
cooperation activities conducted between the railway operating company and the University
of Leeds Transport Research Institute. It was directly provided by the data management
department of TPE and does not belong to open-source generic data under the scope of
GDPR (General Data Protection Regulation). Therefore, in this case study, the Leeds team
was only able to access the dataset, but was not enabled with ownership and sharing au-
thorities. Its major business activities are providing regional and intercity passenger rail
services between the cities of Northern England and Scotland. These services cover three
regional routes around the Manchester area and major cities such as Glasgow, Liverpool,
Leeds, and Newcastle are connected by the three main routes. The target network consists

1https://www.tpexpress.co.uk/
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of 1348 train instances that operate in a medium-sized network with 177 stops/stations and
192 edges/links between these nodes. Figure 4.2 below shows the route map operated by
TransPennine Express.

Fig. 4.2. Route map for the train services of TransPeninine Express (available from
http://www.projectmapping.co.uk/Reviews/Resources/TPERouteMapDec201

9nongeo.pdf)

Different colors represent different routes. The black one, which is “North TransPennine”, is
the busiest one which passes through the core area of Manchester and Leeds. The purple
one, we called “TransPennine North West”, mainly undertakes passenger traffic bound for
Scotland. And the light blue one, “South TransPennine”, provides services to Sheffield and
further south.
It’s a necessary and beneficial operation that conducting pre-processing during data genera-
tion. This phase is the most significant one compared to others due to the quality of its output
directly determines how excellent the prediction accuracy will be and whether the experiment
successful or not. Through the data analysis we identified several quality issues that may
have negative impacts on improving prediction results. generally, the statistics provided by
TPE are heavily imbalanced. Here we give an example - the electronic fraud dataset, in
which fraudulent transactions are significantly lower than the normal healthy transactions.
Similarly, the primary delay dataset has the same issue needs to be addressed: severe
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delay (more than 10 minutes) samples account for around 10% of the total number of ob-
servations. However, as we mentioned in previous sections, the objective of this case study
is to enhance identification capability on rare occurred and minority classes rather than just
achieving greater overall accuracy on the test dataset. Additionally, some values in route
stations such as the departure station are duplicated so we have to remove or refill the mis-
take field. There are other data quality issues such as inconsistent timestamp format and too
many outliers exist in attributes such as ”passenger flow” and ”total margin time”. After the
data pre-processing, we summarized the key attributions that have been used in the primary
delay prediction paradigm in the table 4.1 below.

Table 4.1: All the features used in modelling
Feature Categories Name of Features
Temporal Features Date of Service; Weekday/Holiday; DepartureTime; Arrival Time
Numerical Features Passenger Volumn; Total Margin; Speed Limit; Link Travel Time

Categorical Features Rolling Stock Type; Train ID (headcode)
Label Feature Primary Delay

Network Features Origin Station; Terminal Station; Line-serving Stations

It is worth noting that a novel temporal feature engineering method is applied to temporal
features (i.e., ”departure time” and ”arrival time”) since the ordinary pre-processing strategies
for numerical characteristics may not work functionally on these features. For example,
the train departure time and arrival time are two numerical variables where minimum time
granularity is minute and the numbers count the temporal distance from the time point of
00:00 every midnight to the event time point. Some values of the temporal features are
greater than 1440 due to these trains terminating in the early morning of the next day while
departing from the previous day. An alternative processing strategy needs to be developed
for addressing the encoding and interpreting effectiveness for such kind of cyclical temporal
features. The core idea proposed here is from the mechanism of a popular mathematical
tool - the Polar Coordinates system (PCS), which is a two-dimensional coordinate system
where each point on a plane is determined by a distance from a reference point and an angle
based on a reference direction. Such that the difficulties of featuring the temporal attributes
can be properly accommodated. In figure 4.3 below, a circle with a radius unit of 1 has been
created for mapping each cyclical variable into an evenly located point projection, such that
24 hours a day and 60 minutes an hour has been effectively projected to the corresponding
position. That is the lowest value for that variable appears right next to the largest value.
Then axis coordinates component on the x-axis and y-axis can be calculated by sin and
cos trigonometric functions respectively. In summary, in the data generation of temporal
features, we represented each minute/hour with its own polar coordinate components thus
discrete variables can be converted to interpretable continuous numerical scalers.
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Fig. 4.3. Illustration for projecting cyclical variables into x-y axis components by PCS-based
temporal feature engineering

As for the data preparation for numerical attributes, there was only one related feature in
the original dataset: ”passenger flow”. After analysis we discovered that the attribute ”total
margin time” can be treated as a continuous variable because it shows a distribution trend
similar to Gaussian distribution. Generally speaking, our proposed machine learning mod-
els would benefit a lot from standardization, especially if some outliers are presented in the
original dataset. Standardization has been commonly used at here for transforming the fea-
ture vector to a Gaussian distribution with zero mean and unit variance if this feature is less
standard than normally distributed. After standardization, the negative impact of outliers on
the update of hyperparameters will be offset. Correlation is a statistical measurement that
indicates how many linear relationships two variables have. For example, we can say two
variables are linearly dependent or non-linearly dependent. In figure 4.4 below, 0 repre-
sents the attribute “total margin time” and 1 represents “passenger flow”. While 2, the label
feature, represents “primary delay level”. From the heatmap below We can conclude that
“total margin time” is non-linearly dependent with both of two others features. Nevertheless,
“passenger flow” and “primary delay level” are highly linearly dependent (The correlation
Coefficient is around 0.5).

Fig. 4.4. Pearson correlation coefficients between numerical features
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4.4. Experimental Design and Training

The experimental design was crafted to capture the specific variables that were described
in the data preparation and generation section. For example, in the data description, it was
noted that there was a high linearly dependency between the “passenger flow” and “primary
delay level”. Therefore, the experimental design included controlled varying levels of pas-
senger flow amount to test this relationship. Additionally, the data description mentioned if
departure time falls into a particular time period that might be linked to delay susceptibil-
ity in trains. As a result, the experimental design included testing of the train instances to
determine if there was a correlation between the presence of all the attributions and their
susceptibility to the delay being studied. By integrating the insights gleaned from the data
description into the experimental design, the study was able to more effectively test the
hypotheses being explored.

4.4.1. Experimental Design

Fig. 4.5. Experimental design

The flowchart (shown in Figure 4.5) represents an experimental system for predicting delays
in the railway network described in section 4.3. The designed experiment takes in data
from a Network Topology Structure and splits it into two branches. The first branch uses
the well-known Principle Component Analysis (PCA) algorithm [13] to compress the route
vectors for services and then merges this data with timetable, operating train profile, and
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infrastructure data. This merged data is fed into three different machine learning predictors:
Decision Tree (DT) [14], Random Forest (RF) [15], and Multilayer Perceptron (MLP) [16] for
train delay level prediction.

The second branch uses SDNE to generate node embeddings for stations, which are then
processed by SVD to generate route embeddings for services. This branch also merges
the timetable, operating train profile, and infrastructure data, and feeds the merged data
into the same three machine learning predictors as the first branch. The reason why we
choose these three benchmarks is that they are well-established algorithms that have been
extensively tested and validated, and we want to obtain a standard of performance under
the scope of defined research question and problem projectives in D4.2.

The machine learning predictors in both branches are used to predict delays for each train
service. Overall, this system utilizes both PCA and SDNE to process data and combines
the resulting data with timetable, operating train profile, and infrastructure data to make
predictions using machine learning.

4.4.2. Training Process

The code implementation of the SDNE model was based on “Keras”2, which is a well-known
deep learning API written in Python, running on top of the machine learning platform
”TensorFlow”3. After applying the SDNE algorithm on the TransPennine network, we
obtain the embedded node representation for each station. Where each row represents
an embedding and each column gives information about the value of a specific position,
Notably, if we consider each digit of the embedding vector individually there is no meaningful
explanation that can be given however if all the values are compound together as a whole,
the embedded information can be preserved effectively. We choose 8 here as the length of
each embedding since 28 = 256 > 177 (the number of stations in this network).

However, the SDNE model is only able to generate a node embedding vector for each
station. We are also interested in further modelling the network topology from the route
perspective as this will generate a more compressed vector for the subsequent prediction
task. To this aim, Singular Value Decomposition (SVD) [17] – is introduced for generating
route vectors. To the best of our knowledge, it is the first time to introduce such matrix
decomposition technology into a train delay prediction procedure. SVD performs the matrix
decomposition by extracting the most essential information (called ‘singular values’) in the
original vector. By using SVD we are able to represent the original dataset by a much
smaller dataset, such that the noise and redundant information are significantly reduced.
From this perspective, SVD can be regarded as a process of extracting the most relevant
features from a set of ordered node embeddings, see figure 4.6. Where we extracted
the route information from the station vectors: 1191 routes representations corresponding
to all available train service instances have been generated by orderly concatenating
the en-route station embedding, and computing the sigma matrix for each of the routes,
respectively. Based on this approach, the final route embedding for each service was
generated accordingly. Here we simply attempt to predict delay times based on historic

2https://keras.io/
3https://www.tensorflow.org/
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records which is also used for testing in the ML process.

Fig. 4.6. Process of performing route embedding

The route-embedding method above was finally implemented within three classical super-
vised ML algorithms we introduced in the subsection 4.4.1 to predict primary train delays. In
addition, we compare our Singular Value Decomposition (SVD) under the SDNE framework
with the PCA strategy [13] - PCA is a technique used for extracting the main feature compo-
nents and reduce dimensionalities. On the basis of these benchmarks, we intend to perform
a five-fold cross-validation on the pre-processed dataset. Running the learning experiments
on each fold and then inspect the overall prediction power. The confusion matrix is another
tool that will be used to visualize the performance of classification algorithms. For each pre-
diction task performed in DT, RF and MLP, all predictable cases/instances are intended to
be classified into five categories:

no delay (0) There is no delay occurred on the specific train.
mild delay (1) Those delay minutes above 0 but under 6 minutes are mild delays.
moderate delay (2) Delays lasting between 6 minutes and 11 minutes are categorised as

moderate delays.
serious delay (3) When a delay time falls into the gap of 11 minutes - 16 minutes, we

classify it as serious delay.
severe delay (4) Those delays above 16 minutes are severe delays.

Such that we can properly convert the traditional delay distributional analysis problem to
a ML-based delay level classification question. And it is easily to calculate the prediction
accuracy for different predictors on various delay levels respectively. Currently the topologi-
cal relations between each traffic elements have been captured and we plan to incorporate
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more hidden correlations from the perspective of temporal and sequential-interactions. Our
future work will focus on how to learn the correlations between primary delays and sec-
ondary delays and thus further estimate the occurrence of secondary delays. Table 4.2
highlights the most promising candidate strategy for each module. The column “Contribu-
tions” gives the information about what the main tasks/actions should be taken within this
module. The description of the proposed solution including the applied AI components and
suitable techniques we explained before.

Table 4.2: Suitable AI approaches for Primary Delay Prediction

Module Contributions Suitable Approaches

Node Embedding Module Capturing structural information for TPE network SDNE

Route Embedding Module Concatenating the generated node embedding
into meaningful route vectors

SVD

Delay Prediction Module Predicting the overall delay level for each train service
Decision Tree
Random Forest
Multi-Layer Perceptron

4.5. Numerical Simulations

Route information from the station vectors: 1191 routes representations corresponding to all
available train service instances departure/passby/dwell/terminate at stations, have been
generated by orderly concatenating the en-route station embedding and computing the
sigma matrix for each of them. In this chapter, the aims is to give some validation results for
demonstrating the effectiveness of our SVD method in generating route embedding vectors.
We select 4 different routes from the Network Features:

Route1: Newcastle - Liverpool Lime Street: Newcastle, Chester-le-Street, Durham, Dar-
lington, Northallerton, York, Leeds, Huddersfield, Manchester Victoria, Liverpool Lime
Street

Route2: Newcastle - Manchester Airport: Newcastle, Chester-le-Street, Durham, Dar-
lington, Northallerton, York, Leeds, Huddersfield, Manchester Piccadilly, Manchester
Airport

Route3: Newcastle - Manchester Victoria: Newcastle, Durham, Darlington, Northaller-
ton, York, Leeds, Huddersfield, Manchester Victoria

Route4: Manchester Airport - Doncaster: Manchester Airport, Manchester Piccadilly,
Stockport, Dore Totley, sheffield, Meadowhall, Doncaster

One of the train services launched from Newcastle on the black line has its route information
defined by the stop stations in Route 1 (see figure 4.2). Another service that travels from
Newcastle to Manchester Airport is referred as route 2 above, which is largely similar to route
1. Despite having somewhat different last two calling stations, these two itineraries share the
majority of the same dwell stations. Route 3 is a subset of route 1 and they share all of their
calling stations, while route 3 skips some of the intermediate stops. At last, route 4 offers
a service that is entirely distinct from route 1 and is located in a different region (i.e., light
blue route in figure 4.2). For the convenience of the next-step processing, we sequentially
concatenate the node embedding representations of those four routes’ calling stations (i.e.,
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departure station, dwell stations, and terminal stations) into four route vectors in figure 4.7
below.

(a) Route1 nodes
representation

(b) Route2 nodes
representation

(c) Route3 nodes rep-
resentation

(d) Route4 nodes repre-
sentation

Fig. 4.7. Concatenated node embedding vectors for 4 different train services

In a machine learning context where embeddings are being used, the distance between
two nodes’ embeddings that have been projected far or close in Euclidean space indicates
the similarity or dissimilarity between those nodes in the original high-dimensional space: If
the distance between two nodes’ embeddings in the projected space is small, then these
nodes are likely to be similar in the original high-dimensional space. On the other hand, if
the distance between two nodes’ embeddings in the projected space is large, then these
nodes are likely to be dissimilar in the original high-dimensional space.

The distance between two nodes’ embeddings in the projected space can be used to mea-
sure the similarity or dissimilarity between the corresponding nodes in the original high-
dimensional space. This can be used as a powerful validation tool for our proposed method
on the considered dataset in many cases, such as clustering and classification. Projections
of Route 1 to Route 4 in euclidean space are shown in Figure 4.8(a). As we can see, Routes
1 and 3 are projected very closely together in the embedding space, as can be seen. Route
2 comes next and exhibits a pattern that is similar to that of route 1 in the embedding space.
It is also reasonably close to route 1 in Euclidean distance. When compared to the other
routes, route 4 is embedded far away. The characteristic/proximity of the actual topology
relationships in real-world topologies are largely preserved in the SVD-based route embed-
ding representations, as is readily apparent. In addition, we used k-means methods [18] to
cluster every route that was available, as shown in figure 4.8(b).The result shows us that all
the route embedding vectors have been automatically clustered into 3 different classes and
each of them highly correspond to the three-colored routes shown in figure 4.2.
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(a) Projections of the 4 selected routes in embed-
ding space

(b) Results of k-means clustering on all routes

Fig. 4.8. Concatenated node embedding vectors for 4 different train services

The three axes shown in figure 4.8 are the generated route embedding (1-3), which means
there are three dimensions in each of the routes representation after applying SDNE + SVD
strategy. There are many heuristic strategies for determining the number of dimensions to
keep. In this study we keep 90% of the energy/entropy information from the original matrix,
whose effectiveness has been successfully approved in the previous study [19]. The result
turns out that the first three elements in sigma matrix already properly preserve over 90% of
the essential information of the whole node embedding vector. Therefore, we set the route
embedding dimensions as 3 in our experiments.

4.6. Discussion of Results

The output of the route-embedding implementation will feed into three classical supervised
ML algorithms we introduced in section 4.4.1, for predicting primary train delays in this sec-
tion; the three ML algorithms are DT, RF, and MLP. In addition, we compare our Singular
Value Decomposition (SVD) under SDNE framework with the Principle Component Analysis
(PCA) strategy [13]. To assess the effectiveness of the SDNE + SVD model, we use the
cross-validation provided in (Table 4.3), confusion matrix (shown in figure 4.9).
5-fold cross-validation is a technique used to evaluate the performance of a machine
learning model [20]. It involves randomly dividing our dataset into 5 equal parts (folds),
training the model on 4 of the folds and testing it on the remaining fold, and then repeating
this process for each fold, so that each fold is used as the test set once. We did not take
factors such as seasonal effects into account as the dataset was rather limited in the time
horizon. This aspect could be further considered in future work.

The results of 5-fold cross-validation (Shown in 4.3) can be explained in terms of the
average performance metrics across the 5 folds. Here we use prediction precision as the
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Table 4.3: Comparison between PCA and SDNE+SVD method: 5-fold cross validation
results

Strategy Algorithm 1-fold 2-fold 3-fold 4-fold 5-fold Average Score Standard Deviation

PCA
DT 0.7198 0.7564 0.7347 0.7113 0.7381 0.7321 0.0227
RF 0.7773 0.8190 0.8084 0.7916 0.8239 0.8040 0.0174

MLP 0.8138 0.8378 0.8393 0.8150 0.8511 0.8314 0.0146

SDNE + SVD
DT 0.7443 0.7537 0.7035 0.7249 0.7132 0.7279 0.0187
RF 0.8362 0.8338 0.8138 0.8196 0.7941 0.8195 0.0152

MLP 0.8436 0.8181 0.8421 0.8346 0.8313 0.8339 0.0091

performance measure. These figures provide an estimate of how well the model (i.e., PCA
and SDNE + SVD) will perform on new, unseen data. Additionally, the variance of the
performance metrics across the 5 folds can be used to assess the stability of the model’s
performance. A high variance suggests that the model may be overfitting to the training
data, while a low variance indicates that the model’s performance is consistent across
different subsets of the data.

Across all five sets of data samples, the MLP method had the highest overall prediction
precision, followed by RF, while DT had the lowest average precision scores. Although the
average scores of the two strategies, PCA and SDNE+SVD, were very similar across all
three ML algorithms, the combination of SDNE and SVD demonstrated better generalization
capability and superior expected fitting results on all three models. Specifically, the SDNE
+ SVD method showed promise in achieving more prominent performance on unseen data
instances with less overfitting during training. Additionally, the standard deviations using the
SDNE+SVD strategy were consistently lower than those with PCA strategy, suggesting that
the prediction performances of our proposed method are more stable and reliable as the
complexity of the prediction model increases, regardless of the dataset used.

Confusion matrix is another commonly used tool to visualize the performance of classifi-
cation algorithms. The confusion matrices from our experiments are shown in Figure 4.9,
where 4.9(a), 4.9(b) and 4.9(c) are the confusion matrices generated by predictor DT, RF
and MLP, respectively.

By examining the decision tree matrix in Figure 4.9(a), we can see that this classifier per-
formed well in cases with no delay (0) and serious delay (3), achieving 88% and 86% ac-
curacy, respectively. However, about 41% of the moderate delay samples were classified
incorrectly as other categories. The confusion matrix of the random forest classifier in Figure
4.9(b) showed a significant improvement in accuracy across all delay categories, particularly
in non-delay (0), serious (3), and severe delay (4) samples, achieving 94%, 92%, and 88%
accuracy on the test dataset, respectively. The multi-layer perceptron classifier in Figure
4.9(c) further boosted prediction accuracy on each sub-category, achieving a higher level of
accuracy (96% and 94%, respectively) in non-delay and serious delay cases. Nevertheless,
although mild delay (1) and moderate delay (2) are the two categories with lowest prediction
accuracy, MLP classifier seems tend to reach a balance between them, and managed to
make the cases of mild delay (1) wrongly classified as the moderate delay (2) as less as
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possible, and vice versa.

(a) Decision Tree Classifier (b) Random Forest Classifier

(c) Multi-Layer Perceptron Classifier

Fig. 4.9. Confusion matrices on three different baselines

Table 4.4 shows that our method achieved an improvement in the average accuracy over
all delay classes compared with the baselines performed on the dataset, reaching 86.80%
on the best-performed model. In addition, the second row demonstrates that the overall
training time of our method is significantly lower than that of competitive methods on every
benchmark. Specifically, the model running time efficiency on the most accurate predictor
(MLP) improved by 490% (as shown by the green line in Figure 4.10), which means the delay
status of each unknown train service can be calculated promisingly within 0.24s, even if we
migrate it to a brand new dataset and the model needs to be retrained. Figure 4.10 illustrates
the significant decline in necessary computational efforts, indicating that our method has a
prominent achievement in saving model training time and great potential for short-term, even
real-time delay prediction.
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Table 4.4: Comparison between PCA and SDNE + SVD method: Overall accuracy and
Training time

Strategy PCA SDNE+SVD

Algorithm DT RF MLP DT RF MLP
Overall Accuracy 76.68% 82.09% 83.89% 77.40% 84.59% 86.80%

Overall Training time (s) 374 1133 1417 96 235 289

Fig. 4.10. Comparison between PCA and SDNE+SVD: training time by percentage

Finally, it is noticed that our work aligns with a subfield of AI known as “representation
learning/self-supervised learning”. The proposed approach benefits from a broader selec-
tion of models within that subfield. However, the overall model appears capable of accu-
rately predicting the primary delay. It would be intriguing to explore the generalizability of the
learned model, preferably on a separate dataset.
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5. Big Data on Incident Attribution Analysis

5.1. Introduction

According to the Delay Attribution Report by Rail Delivery Group to ORR (Office of Rail and
Road)1, the scoping stage report in July 2019 2 pointed out 10 different recommendations
regarding those areas that could be improved and need to be examined further to ensure
the system performs better quality, higher reliability, more comprehensive understanding
towards the input information. It discussed and allocated various responsible owners to
take forward. Although there has been some progress in developing a number of the
recommendations, very little work was carried out on the remainder. Therefore, in order
to provide proper impetus to the current delay attribution analysis, as well as proactively
respond to the Steering Group’s promising view scope, we have decided to put this case
study scope on furtherly automating the attribution process of cascading delays, with the
aim of exploring the possible road map of applying AI techniques into this process.

Both the infrastructure provider and train operators need comprehensive insights to better
understand how a delay at a certain location affects the wider network. Under this circum-
stance, the TRUST system (delay attribution data provider) only reviews trains that have
been delayed by at least 3 minutes, however, those delays of less than 3 minutes are au-
tomatically attributed by the system to the railway company responsible and Network Rail
responsible without further investigation into what caused the delays. On the one hand,
the complex nonlinear spatial-temporal interactions between different train vehicles (e.g.
timetable conflicts) and operators (e.g. track access rights) comprehensively determine how
long the delay will last, and the range of its propagation in the network. They are difficult
to be accurately predicted using the traditional approaches if we fail to preserve these rela-
tions and analyze/derive these delays from their original small disturbances. On the other
hand, different railway disturbances and abnormal events are triggered by various determin-
ing factors. Some of them share the same root causes but others not. directly feeding all the
observed relations/deterministic factors into the conventional statistical analysis function or
descriptive model may not help us to figure out the correct delay propagation chain. Which
may result in the computation space being too vast thus computation efficiency will be un-
dermined. There are two major tasks we need to address in this study. How can we use
Big Data techniques to interactively visualize historic train delay records to reproduce how
these delays were triggered by small disturbances/disruptions/unexpected events is the first
step we will perform. Second, by deriving and learning how these disturbances develop to
observed primary delay and then propagate along a specific line/route of the network, we
are able to generate meaningful prediction insights of whether a delay will occur or prop-
agate between particular locations, timepoints, and train services. We aim to train a link
prediction model (i.e., given two nodes, predict whether a propagation link between these
two nodes should exist or not) in this step. Big Data and Graph Neural Network techniques

1https://www.orr.gov.uk/sites/default/files/2020-09/rdg-delay-attribution-revie
w-report-2020-09-28.pdf

2https://www.orr.gov.uk/sites/default/files/2021-06/delay-attribution-review-s
coping-stage-report.pdf

GA 881782 Page 25 | 42

https://www.orr.gov.uk/sites/default/files/2020-09/rdg-delay-attribution-review-report-2020-09-28.pdf
https://www.orr.gov.uk/sites/default/files/2020-09/rdg-delay-attribution-review-report-2020-09-28.pdf
https://www.orr.gov.uk/sites/default/files/2021-06/delay-attribution-review-scoping-stage-report.pdf
https://www.orr.gov.uk/sites/default/files/2021-06/delay-attribution-review-scoping-stage-report.pdf


are introduced during interactive delay attributing visualization and potential propagation link
prediction sub-tasks, respectively.

5.2. Model Description

5.2.1. Motivation and relevant works

This case study is developed with the purpose of seeking industry-corporate agreement on
the best way to accommodate the unaddressed recommendation, considering a proposal for
greater automation of the secondary delay attribution process. Regarding this, Network Rail
and several operators recommended that some elements of the attribution of secondary
delay can be replaced by ’hard-coded rules’, rather than on the previous ’case-by-case’
basis. This proposal would improve the consistency of the attribution of secondary delay
and, by implementing a more intelligent hard-coded rule-based attribution process, would
reduce the scope for potential disputes. For example, [21] presents a machine learning-
based framework for predicting key performance indicators related to secondary delays in
British railways with greater accuracy than existing systems. [22] proposes a novel model
for studying train delays, which simulates delay propagation through a diffusion-like process,
and applies it to the Belgian railway system, finding that spatial aggregation significantly
increases the model’s performance and showing the potential of this type of modelling to un-
derstand large-scale properties of railway systems. Recent progress on this was developed
by the Rail Safety and Standards Board (RSSB) [23], where an approach of automating and
visualizing the attribution of secondary delay has been proposed. The contributions of that
study can be summarised as two separate parts:

• To investigate the causes and effects of secondary delay, a set of modeling tools for
railway performance on a route basis was developed, and it will be shown how train
operating firms and Network Rail can use them.

• Explain how the tools can be used to test a variety of performance-improving interven-
tions and anticipate the level of service performance that can be attained through each
intervention.

The model proposed by RSSB [23] pays much attention on understanding secondary de-
lay in trains using a set of Monte-Carlo style Agent-Based Model runs. The visualizations
help identify the locations, types, and mechanisms of primary and secondary delay and as-
sist in designing interventions. However, it failed to consider the whole problem from the
perspective of railway network and how the incidents triggered the initial delays.
In our case study, we got more interest on analyzing the delay attribution data, due to it is
possible to predict the propagation of delays and the occurrence of secondary delays. For
example, if a delay event is caused by infrastructure issues, it may result in train bunching,
which can cause delays to other trains on the same route. By analyzing historical delay
data, it is possible to identify these patterns and predict the likelihood of secondary delays
occurring in the future. This information can then be used to develop strategies to minimize
the impact of delays on train services.

5.2.2. Proposed Delay Attribution framework

Understanding the root causes of performance issues is not that easy, due to the fact that
railway system has complex interactions and dependencies between individual components
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(i.e., passengers, trains, staff, stations, timetables, junction, weather). Secondly, the
propagation of delays is sensitive to small variations in inputs that can cause an escalating
chain of events, such as, cascading delays across the network. In addition, an observed
delay can be affected or determined by rare combinations of events.

Our proposed tools consist of a set of interactive visualizations to explore the complex in-
teractions between modeled train services and events. Based on this, a GraphSAGE-based
model has been developed to estimate the potential primary/secondary delay resulting from
the existing incidents/train service event across the network of TPE routes 3. In addition,
a pilot intervention simulation will be performed with several supervised machine learning
techniques, with the purpose of improving overall service quality. (See Fig 5.1)

Fig. 5.1. High-Level Architecture for Big Data on Incident Attribution Analysis.

3-D interactive visualizations This module aims to simulate how the sequential chain
reaction is triggered between different incidents and trains, as well as between trains
themselves, in an informative space of a hybrid spatial-temporal scale. We will inspect
the evolutionary process of how a ”significant” delay develops from small disturbances
to an observable primary delay and then secondary delays, in a more intuitive and
clear way. Consequently, how these delays subsequently affect the punctuality of other
train services. Multiple essential information will be effectively illustrated such as the
length of delay minutes, scale of incident/delay, the cause of the incident, triggering
relationships between delays, and the significance of dependencies between services.

With the use of such informative visualization, over thousands of statistical values,
such as places, trains or times, can be easily displayed and understood. Interactions
allow the user to find out more information or compute on-demand statistics for
particularly interesting scenarios. Our visual summaries not only provide the insights
of problematic train services and locations, but also enable users to delve further into
the information to comprehend the causes of these delays and aid in the planning of
intervention policies.

Intervention simulation Once the potential reasons for the reactive delay have been
determined, interventions that aim to shorten these delays might be suggested. The

3https://www.tpexpress.co.uk/
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modeling and visualization tools can then be used to recreate the sequential occur-
rence process of events with a set of input data that describes what the interventions
are intended to accomplish in order to validate the efficacy of these interventions, such
as reducing or preventing the causes of significant delays that the railway stakeholders
might be interested in resolving. For example, reducing the number of track-based
primary incidents, or reducing a range of incident durations.

GraphSAGE-based model In this module, our task is to learn if an edge exists between
a provided node (service) and the existing nodes (services) we represented in the
first module. In other words, exploring the possible responsible train and the potential
reacted train for a newly introduced train service in the network that is characterized
by an analysis of Network Rail attributed delay data. We use our implementation
of the GraphSAGE algorithm [24] to build a model that predicts propagation links in
our proposed TPE-Network Rail hybrid dataset, see the description in section 5.3.1.
This problem is treated as a supervised link prediction problem on a heterogeneous
delay propagation network with nodes representing incident and delay cases for train
services.

This case study lays the groundwork of modelling and visualization of multiple services with
various performance information (such as delay scale and impact of delays), over longer
periods of time.

5.3. Dataset Generation

5.3.1. Data Sources

Steering group We held regular group discussions with the WP4 partners and the project
steering manager. These discussions initiated potential data resources, innovative
assumptions and experimental designs. The valuable opportunities to test our
proposed framework, the emerging finding, and guide our obtained resources to the
most valuable developments.

Data providers We’ve searched online and the result turns out that no suitable pre-built
datasets were exactly qualified for the investigation purpose. Therefore, we leveraged
some existing data repositories provided by our cooperating railway undertaking,
see the section 4.3 for more details. Apart from this, we also collected a number of
corresponding historic delay attribution data (including incident/delay locations, type
of incidents and affected train service group) from the open data feeds provided by
Network Rail 4.

TPE provided historical operation records including the possible factors that affect
delays (i.e., passenger loading volume, total margin time, service speed limit, rolling
stock type), the real-time train timing (i.e. date of service, departure/arrival time), train
route information (i.e. origin/terminal station, line-serving stations), and delay data.

4https://www.networkrail.co.uk/who-we-are/transparency-and-ethics/transparency
/open-data-feeds/
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Expert opinion TUDelft provided expert opinion, particularly on identifying type of delays
caused, explaning sub-threshold delay and its corresponding processing strategy,
understanding and distinguishing the concepts of disturbances, incidents, and disrup-
tions in the dataset.

5.3.2. Data Explanation

The task requires the corresponding Train Delay Attributor (TDA) at the relevant Network
Rail route to give its judgment on whether a train service is committed with delay or not.
Please note that the whole dataset contains primary delay cases and reactionary delay
records, including the chain reaction of knock-on delays - there is not necessarily one layer
between the occurred incident and the knock-on delay, several hidden layers can be found.
In other words, in this case, only incidents directly result in primary delays, while secondary
delays can be triggered either by a primary delay or another secondary delay. There are
two different categories regarding how a disturbance triggers delays and how its negative
consequences cascade along the network:

• causing secondary delay to another train or a set of services in the network (the re-
action sequence denotes as ’incident → primary delay → 1st layer knock-on delay →
2nd layer knock-on delay → ... → last layer knock-on delay)

• not causing any secondary delay to another service in the network (the reaction se-
quence shown as ’incident → primary delay’)

In the first step, the ’TRUST DA’ - Delay Attributor of Train Running Under System TOPS
(Total Operating Processing System) 5 was used for delay attribution and using a feed
from TRUST 6. When there is an observed delay or another event that caused a service to
experience an unplanned disruption, the TRUST DA identifies where delays have occurred
and those above a certain threshold.

It is worth noting that although all delays on the network are captured and recorded by
the TRUST system, they are not all attributed, investigated, or explained. For example,
a Delay of 3 minutes or less deemed not to cause any reactionary delay of 3 minutes or
more is not attributed. For this sub-threshold delay, no action is taken to understand the
detailed cause. That is, the responsible parties for these sub-threshold delays have been
automatically and equally split between the Network Rail and the specific Passenger Train
Operating Company. According to the statistics of Network Rail 7, about 35% of all delay
minutes on the network are sub-threshold. Secondly, there are instances where Network
Rail is unable to investigate the causes of delays as they do not have sufficient resources
to investigate all the delays in a timely manner under significant disruptions. Therefore, the
number of uninvestigated delays surges. In some extreme circumstances, Network Rail
does investigate the delay, but no cause can be found by either of the parties involved, in
which case the delay is classified as unexplained. Figure 5.2 shows the possible outcomes

5The ’TRUST (Train Running Under System TOPS)’ is a system recording historical abnormal events of train
movements when a train arrives at a location later than specified in the Plan of the Day, including scheduled
and actual departure/arrival times, as well as cancellations or fail to run part of the journey.

6https://www.orr.gov.uk/sites/default/files/2021-06/delay-attribution-review-s
coping-stage-report.pdf

7https://www.networkrail.co.uk/who-we-are/transparency-and-ethics/transparency
/open-data-feeds/
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of the delay attribution process when a delay occurs on the network and captured by the
TRUST system.

Fig. 5.2. Illustration of Unattributed, Uninvestigated and Unexplained delays in TRUST

At the last step, if the received record is deemed to be linked to an existing delay, the delay
is attributed to an existing incident as a secondary delay with its secondary delay code.
Alternatively, if it is thought to be an operator-caused delay, the Network Rail DA (Delay
Attributor) will assign a proper incident reason code to it and pass it to the relevant operator
through the TRUST system.

5.3.3. Data Preparation

We have explored graph networks to explain the occurrence and propagation patterns in
train delay management. One of the main challenging tasks that deals with graphs is how
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to properly visualize the network, the node properties, and edge dependencies in a neat,
visually appealing way. Normally the default plotting options are built on Matplotlib 8, which
is acceptable however it is sub-optimal for the interactive visualization we proposed in the
last section.

3-D interactive visualizations In the first module, instead of adapting the Matplotlib axis
API 9, manually modifying the graph, or creating a one-off function, something more
robust, easier to use straight out of the box, aesthetically beautiful, and neat. Which
is more acceptable by those who work in railway disruption management team or de-
lay attribution institute. The straightforward output that being displayed depending on
the real-world network is significantly important to those who has expertise in train
dispatching but little experiences on data visualization.
This module produces delay results for considering train services in a detailed manner,
at several levels of information aggregation: individual incidents, zero-loading testing
trains, passenger train services, which train initially caused the incident (if any), who
is responsible for the delay (industry/operating or other possible responsible parties),
affected railway business route and service groups, the cause code for the incident,
where the incident/propagation took place, time stamps, etc. The most important as-
pect of these visualizations is that they take into account all railway service interactions,
not only the explainable ones that are attributed to delays longer than three minutes.
As a result, a comprehensive picture of what causes reactionary delay is shown, cap-
turing the mix of events and other factors that have influenced these modeled delays:

• any train conflicts that naturally emerge from the normal timetable scheduling or
running, without any sign of incident triggering.

• train delays below the assigned threshold (those that are under three minutes
and not attributed to a cause, however all the delays under 3 mins (2*1.5) has
been equally split into the Network Rail responsible and the corresponding Train
Undertaking responsible)

• trains delayed as a result of any existing incident with a known cause (delays over
three minutes)

Intervention simulation This module is data driven, using the output of the interactive vi-
sualization as input to characterise any part of the railway system during any segment
of the time period of a specific day. This means this module is capable to be fine-tuned
for customizing any part of the UK railway network by changing the data input.
A brief data preparation procedure is needed to identify the rail network segment that
will be modelled and to automatically retrieve the pertinent train services from the na-
tional timetable. Our original plan was for this procedure to be totally automated and
to take advantage of any data already available on the visualized interaction network,
notably ”3-D interactive visualizations”. After making an effort to accommodate the
dataset that characterises the stations, depots, and lines and link the timetabled ser-
vices (provided by TPE) with the Network Model, we were unable to locate any data
defining the necessary relationships between them, in particular, the relationship be-
tween TIPLOC locations used in the timetable and the Network Rail Network Model.

8https://matplotlib.org/
9https://matplotlib.org/stable/api/axes_api.html
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Automating the entire data preparation process is a crucial next step, but doing so
would involve spending more time establishing the connections between the various
data sources. Once this is accomplished, Network Rail and Train Operating Compa-
nies may be ready to utilise the uniform railway performance tools and quickly apply
them to other areas of the UK rail network.
The final step in data preparation is defining the artificial incidents that could be incor-
porated in model runs, causing train services to be delayed and resulting in reactive
delay.

GraphSAGE-based model This task required the annotators (Delay Attribution Board) to
give their judgments on whether a train service is delayed or not. There are 3 steps to
complete this task:

• [Sub-task A] In the first step, the Delay Attribution Board (DAB) marks the train
service as being delayed or not delayed.
In sub-task A, we are interested in the identification of those delayed services that
are above the threshold of 3 minutes, fully investigated, well explained, and have
not been canceled at any part of the serving segment. There are 2 categories in
which the train service can be classified at the end of this task.

• [Sub-task B] If the train service is delayed then we need to figure out if the delay
is targeted towards a particular train service (primary delay) or a bunch of subse-
quent relevant services (cascading reactionary delay), or it will not propagate.
In this sub-task, we are interested in categorizing delays. The input only contains
cases that were qualified assessed in task A. We need to label and distinguish
each case from the following categories: (1) Incident triggered individual primary
delay, and it ends there. (2) Incident triggered multiple primary delays but failed
to initiate any subsequent impacts on other train services. (3) A primary delay
triggered individual/a group of reactionary delay(s).

• [Sub-task C] If the delay is targeted as reactionary delay then we also need to
tell which reactionary delay reason is applied.
In this sub-task, we are interested in the specific category of secondary delays.
Only train delays that are either derived from another primary delay or another
secondary delay are included in this sub-task. Each instance needs to label from
one of the following categories as shown in Table 5.1.
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Table 5.1: Reactionary delay reason and corresponding explanation

Reason code Explanation

YA Lost path - regulated for train running less late
YB Lost path - regulated for another later running train
YC Lost path - following train running less late
YD Lost path - following another later running train
YE Waiting path onto/from single line
YF Waiting for late running train off single line
YG Regulated in accordance with Regulation Policy
YH Late arrival of inward loco
YI Late arrival of booked inward stock
YJ Late arrival of booked inward train-crew
YK Waiting connecting Freight or Res traffic to attach
YL Waiting passenger connections within Connection Policy
YM Special stop orders within the contingency plan or agreed by NR/TOC
YN Service Recovery-booked train crew, not available
YO Waiting platform/station congestion/platform change
YP Delays due to diversions from booked route or line
YQ Passenger overcrowding caused by a train being of short-formation
YR Tactical cancellation for service recovery not caused by late running
YT Reactionary delay by a train that is leaving the network
YU Service Recovery-booked rolling stock, not available
YV Tactical hold of train at origin or at a strategic location en-route
YX Passenger overcrowding caused by delay or cancellation of another train

5.4. Training and Validation

This section discusses the Big-data visualization techniques and GraphSAGE-based algo-
rithm we adopted to implement the modules depicted in Fig. 4.1. Notably, the module of
’Intervention simulation’ does not involve any AI, therefore, its details are not elaborated in
this section but the corresponding discussion is postponed to the remaining sections.

5.4.1. 3-D interactive visualizations

The available dataset after data preparation in section 5.4 consists of 20829 historic
attributed delays from 27th May 2018 to 23th June 2018 (in line with the timeline provided
by TPE delay dataset described in section 4.3, which was extracted from the Performance
System Strategy (PSS) database. According to guidelines provided by the Delay Attribution
Board (DAB), the information in the file includes any delays that have been ”attributed” to
passenger rail services. The tabulated series data includes important information such as
what caused the incident, the train that directly caused the ”target train” to be delayed, the
train that caused the initial delay which set off a chain of delays, the reactionary reason why
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the delay is propagated to the next train service, etc. Since there is no strong correlation
between the train services in two different days - few trains are operating during the period
of 2am to 5am, and an incident occurs during these time slots may not propagate to a
wide range of the network, we manually divide the dataset on the daily basis. It is worth to
note that the fundamental data feeds we utilized in the GraphSAGE-based delay attribution
model is based on what we developed in this stage.

This module simulates a multitude of potential delay propagation outcomes that can occur
on a given day. It is capable to explore the range of possible conflicts and subsequent
reactionary delays that can cascade from a timetabled day of train services, no matter
scoping on an individual train operating company or a part of collaborated railway networks
that include a set of railway undertakings involved. Such detailed output data describe the
many ways where/when/how train services can be delayed.

As an innovative advancement and the most integral component adopted in this case study.
The results of interactive visualisation after numerous model runs include thousands of
primary and reactionary delays. To validate, analyse, and act upon the model’s illustrations,
considerations must be taken into account from various angles and degrees of abstraction
(i.e., by train service, location, time-slice, incident reasons, etc.). Although the model’s
high-level statistical summaries are informative, they exclude redundant and inexplicable
information. Information visualisation is capable of displaying hundreds of statistical values
for numerous locations, trains, or times in an understandable manner. For instance, a map
of delays is easier to understand than a table of figures for each site. This is due to the fact
that humans have an innate ability to discern values and create comparisons, for instance
utilising circle size or colour lightness. The user can learn more information or generate
statistics for certain scenarios of interest by interacting with visualisations. Figure 5.4 is an
illustration of the visualisation on the day of 27th May 2018. For example, once we touch
any of the leaf node (or intermediate node) in the interactive visualization, a hover text will
pop up for giving the information about what this node represents (at what time which train
service has been detected with how many mins of delays, and the responsible train which
caused this delay). More than that, we are still working more costomized visualization -
when a particular node has been selected, the visualization will highlight the whole delay
propagation chain until its root causes to be found (normally they are the big-sized nodes
shown at the core area of the figure). Such that the railway delay distributing staff can easily
identify most observed delays with their root events and find a general pattern between the
occurrence of severe delay and these abnormal events.
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Fig. 5.3. Screenshot from the 3D interactive visualization

5.4.2. GraphSAGE-based model

To create a link prediction model in this module, we must first construct the train and
test sets of connections as well as the matching graphs without those links. Using the
EdgeSplitter class in the library of stellargraph.data 10, we will divide our input graph into a
train and a test graph. The model (a binary classifier that, given two nodes, predicts whether
a link between these two nodes should exist or not) will be trained using the train graph,
and its performance on hold-out data will be assessed using the test graph. Each of these
graphs will include the same number of nodes as the input graph, but their number of links
will vary (and probably be lowered) since certain links will be eliminated after each split and
utilized as positive samples for developing and testing the link prediction classifier, extract a
selection of test edges (true and false citation linkages) at random from the original graph
G, then create the reduced graph G test by removing the positive test edges.

Specifically, we build a model with the following architecture. First, we build a multi-layer
GraphSAGE model that takes labeled node pairs (responsible-incident/train-delay →
affected-train-delay) corresponding to possible propagation links, and outputs a pair of node
embeddings for the pair of ’responsible-incident/train-delay’ and ’affected-train-delay’ nodes.
These embeddings are then fed into a link classification layer, which first applies a binary
operator to those node embeddings (e.g., concatenating them) to construct the embedding
of the potential link. Thus obtained link embeddings are passed through the subsequent
10https://stellargraph.readthedocs.io/en/stable/README.html
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dense link classification layer to obtain link predictions - probability for these candidate links
to actually exist in the network. The entire model is trained end-to-end by minimizing the
loss function of choice (e.g., binary cross-entropy between predicted link probabilities and
true link labels, with true/false citation links having labels 1/0) using stochastic gradient
descent (SGD) [25] updates of the model parameters, with mini-batches of ‘training’ links
fed into the model.

The generators for the testing and training links are then built into the model. where they
essentially ”map” pairs of nodes (responsible-incident/train-delay → affected-train-delay) to
the input of GraphSAGE: they take minibatches of node pairs, sample 2-hop subgraphs
with head nodes extracted from those pairs (responsible-incident → affected-train-delay or
responsible train-delay → affected-train-delay), and feed them, along with the corresponding
binary labels indicating whether those pairs represent true or false propagation links, to the
input layer of the GraphSAGE model, for SGD updates of the model parameters.

5.5. Findings and Discusssion

5.5.1. 3-D interactive visualizations

The proposed interactive visualization tool has generated the following interesting discover-
ies: Our 3D visualization tool identifies the locations that cause the most reactionary delayed
segments of network, time slots in a day, and the certain categories of incidents. Specifically,
it summarises the relative lengths of the primary delays by the primary delay types, and how
these length varies between different times of the day. Also, it demonstrated the top inci-
dents that triggered the most significant amount of primary delay and then secondary delays.

In this 3D interactive visualization diagram, the viewer can use various tools and controls
to manipulate the position and orientation of the camera, zoom in or out, and interact with
the objects in the scene. This allows for a more detailed and comprehensive exploration
of the object or scene being represented and can provide a more intuitive understanding
of its features and properties. Some common functions of it include: 1) Three-dimensional
objects or scenes that can be rotated, panned, or zoomed in and out. 2) Realistic lighting
and shading to give the objects a sense of depth and dimensionality. 3) The ability to select
and highlight specific objects or parts of the scene. 4) Annotations or labels to provide
additional information about the objects or features in the scene. 5) Interactive controls
and tools for manipulating the view or performing specific actions on the objects or scene.
Overall, this 3D interactive visualization diagram can provide a powerful tool for exploring
complex data or designs in a more intuitive and immersive way, allowing users to gain a
deeper understanding of the objects or scenes being represented.

For example, in the four figures shown below (figure 5.4), the interactive visualization gives
the information on what a particular node in this visualized network represents and the
color/size of such node also denotes the overall delay minutes caused by this specific ser-
vice. In other words, the bigger the node is, the more severe the delays caused by this
service are, and vice versa. when moving inspection perspective to a specific node ’6C79’,
the viewer is able to identify how many subsequent cascading delays/events have been trig-
gered by this train service. More important, it also gives the information about which train
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service has been affected by this origin train service and what time the delay propagated
along the network.

Fig. 5.4. An example of the 3D interactive visualization

We would also like to adapt this tool to work with the real-time attributed delay data (if there
is any) and train movement data (not only on a service basis but also make the investigation
scope into a more detailed level, which is capable to visualize the delay attribution results
within the serving station basis), such that the mechanisms of delays propagation between
services/stations in a short previous period can be explored.

It would take some effort to construct the uniform visualizations and interactions model de-
scribed above, but Train Operating Companies (TOCs) who intend to build interactions with
their own needs are likely to find them useful. That is, these graphs are hopefully to be input
into other automated tools that provide practical information from it. It is worth noting that
the practical tools used several recent studies such as time-distance diagram [26], as well
as colored railway network maps [27]. However, what we aim to investigate in this interac-
tive visualizations part concerning a different aspects: this study concentrates on how the
referred disturbances/events trigger delays among train services, instead of inspecting the
propagation affects from the railway network perspective. In other words, such visualization
aiming to figure out the root cuase-effect relations rather than simulating the propagation
process. Once the problematic areas and trains have been located, each model run can be
investigated by gathering information on the types of delays that they were causing, the indi-
vidual trains that initially resulted in the delay, and those that are picking up the subsequent
reactionary delays. To determine which facts, visuals, and interactions will best complement
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interaction design, we would like to work more intently and closely with a broader TOCs
scope, for gaining more insights and then reflect them in our visualization.

5.5.2. Intervention simulation

An end user-friendly interface identifies the most problematic train services, locations and
time slices, at which interventions or other following policies might be appropriate to be
supplied. The variation between model runs indicates the range of possible consequences
of delays. This allows the users to directly and swiftly identify the most problematic
locations, where the registered incident events cause the most severe reactionary delays.
The locations where the reactionary delays derived from are therefore to be identified and
these locations might be worth trying to apply artificial interventions to simulate different
effects of the reduce delay impacts, as well the propagation pattern of them.

Once possible interventions have been identified and coded, the model produces delay re-
sults for this intervention. For example, we characterise three different sets of interven-
tions, and based on which explore to what extent service performance improvement can be
achieved.

• Intervention 1: Reduce the number and duration time for all primary incidents, i.e.,
halve the probability of incidents occurring, halve the incident duration, and halve the
delay duration/lasting time.

• Intervention 2: Reduce the number and duration for those primary incidents that only
causing the most significant amounts of reactionary delay, which include - network
management incidents, non-track incidents, track incidents, as well as off-network in-
cidents.

• Intervention 3: Reduce the duration time for all incidents by 50%. This intervention
was designed to demonstrate the effect of focusing efforts to significantly improve re-
covery times from incidents.

In practice, to reach this level of impact, a large amount of efforts would be needed.
However, we sought to illustrate what a major performance improvement would resemble in
a model and visualisation. Interactive visualization can be used to understand the impact of
these interventions and the details of this by location, train, and model run. It is likely that
the effect of the intervention will vary by model runs, so some interventions may have more
consistent effects than others. Our visualization tool allows side-by-side direct comparison
but does not currently directly encode the difference between model runs. We would like to
develop tools to compare different interventions.

The second part generates delay effects for this intervention once potential interventions
have been discovered and coded. The impact of these actions and the specifics of this
by location, train, and model run can be understood via interactive visualization. It is likely
that the intervention’s impact will differ depending on the model run, meaning that certain
interventions may have more predictable results than others. The difference between model
runs is presently not directly encoded by our visualization tool, but it does allow side-by-side
direct comparison. Tools can be created to evaluate the proposed approaches.
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5.5.3. GraphSAGE-based model

This report presents the findings of our study on the use of a GraphSAGE-based link pre-
diction model for predicting delay propagation in a railway system. Our study involved
implementing the model on a dataset of railway timetable information, and evaluating its
performance using standard evaluation metrics. The results of our study suggest that the
GraphSAGE-based model is an effective tool for predicting delay propagation in railway sys-
tems.

(a) Prediction accuracy curves on training set
and validation set

(b) Training loss curves on training set and val-
idation set

Fig. 5.5. Training accuracy and loss on GraphSAGE-based model

The training accuracy and loss curve diagram shown in Figure 5.5. It is a common way to
visualize the performance of a machine learning model during the training process. This
diagram gives information about how the model’s accuracy and loss change over time as it
is trained on a set of input data. The horizontal axis of the diagram represents the number
of training iterations, or epochs, and the vertical axis represents the accuracy or loss value.
The accuracy is typically expressed as a percentage, while the loss is a measure of how
well the model’s predictions match the actual output values. During training, the model tries
to minimize the loss function by adjusting its parameters to fit the training data as closely as
possible. As a result, we expect to see the loss curve decrease over time, indicating that
the model is getting better at predicting the correct outputs. At the same time, the accuracy
curve should increase as the model becomes more accurate in its predictions. However,
it is possible that the accuracy could plateau or even decrease if the model overfits the
training data and starts to perform poorly on new, unseen data. Finally, it is noted that the
testing loss remained relatively stable throughout the training process. This indicates that
the initial guess was already fairly effective compared to the final trained model. It suggests
the potential for further enhancements in terms of the model’s generalization ability.
Overall, the training accuracy and loss curve diagram provides a helpful visual representa-
tion of the model’s performance during training and can be used to diagnose issues such as
overfitting, underfitting, or convergence problems.
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6. Conclusions

In this deliverable, the potential of AI solutions towards a vision of traffic planning and
management in the railway sector have been investigated through experimental proof-of
concepts. These last represents the continuation of the methodological analyses provided
in the previous deliverable for two selected case studies, namely, “Graph Embedding based
Primary Delay Prediction”, and “Big Data on Incident Attribution Analysis”.

In accordance to the objectives, techniques, and research questions identified in the previ-
ous deliverable, for each case study, an innovative approach which exploits AI techniques
has been provided. The effectiveness of the proposed strategies have been evaluated via an
experimental validation in concrete operational scenarios. Results showed that AI can rep-
resent a valuable solution for enhancing rail traffic planning and management. These proof-
of-concepts are meant to be a first step to inspire future developments and a technology
roadmap. A detailed analysis of the results from each case study to identify opportunities,
gaps, strengths, and weaknesses will be indeed the main object of the next deliverable.
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