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Executive Summary

This deliverable contains a critical examination of the work and the results obtained in WP2,
also against the current state-of-the-art in railways. From the Proofs-of-Concept (PoCs) and
the experience gained by developing the tasks of the project, this document reports lessons
learned, weaknesses and strengths shown by each exploited technology, technical and im-
plementation recommendations, unaddressed issues, and innovation needs. Specifically,
an in-depth analysis of the methodological and experimental PoCs carried out for the two
selected case studies proposed in the previous WP2 deliverables, namely, “Obstacle Detec-
tion for Collision Avoidance” and “Cooperative Driving for Virtual Coupling of Autonomous
Trains”, are provided. This analysis, arranged according to the SWOT structure, is going to
highlight the main strengths (S) and weaknesses (W) shown by the proposed AI approaches,
and to identify external opportunities (O) that could support its technical feasibility, as well as
some open challenges related to the main threats (T) emerged from each PoC. Starting from
this evidence, some specific recommendations are addressed regarding the effectiveness of
the proposed AI approaches. Furthermore, general recommendations are drawn, including
suggestions for future development, experimentation, and applications for the integration of
AI in the rail sector.
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Abbreviations and acronyms

Abbreviations / Acronyms Description
AI Artificial Intelligence
ADM Anomaly Detection Module
ATO Automatic Train Operation
ATP Automatic Train Protection
CCTV Closed Circuit Television
DDPG Deep Deterministic Policy Gradient
DL Deep Learning
DNN Deep Neural Network
DRL Deep Reinforcement Learning
DT Digital Twin
ETCS European Train Control System
GoA Grade of Automation
GoI Grade of Intelligence
IoT Internet of Things
ITC Intelligent Train Control
ITO Intelligent Train Operation
ITP Intelligent Train Protection
KPI Key Performance Indicator
LoI Level of Intelligence
ODM Object Detection Module
PoC Proof-of-Concept
RBC Radio Block Center
RDM Rails Detection Module
SIL Safety Integrity Level
SOSS Safe Operational State Space
SWOT Strengths, Weaknesses, Opportunities, and Threats
T2I Train-to-Infrastructure
T2T Train-to-Train
T2X Train-to-Everything
VC Virtual Coupling
VBODS Vision-Based Obstacle Detection System
VCTS Virtually Coupled Train Set
XRL Explainable Reinforcement Learning
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1. Objective

This document aims to draw some conclusions from the work carried out in WP1 and WP2,
helping to clearly identify possible future innovations, research directions, and impacts for the
European railway sector. These objectives are strictly related to the work addressed in the
previous WP2 deliverables, in which methodological and experimental Proofs-of-Concept
(PoCs) have been carried out for two selected case studies, namely, “Obstacle Detection for
Collision Avoidance”and “Cooperative Driving for Virtual Coupling of Autonomous Train”.
On the basis of the results that emerged from the PoCs, the main goal of this deliverable is
to provide some recommendations and innovation needs which could support the effective
adoption of AI in the rail sector. To this aim, the present document focuses on the following
objectives:

• a brief overview of the recent advancements in the field of the related PoCs;
• an in-depth analysis of the proposed PoCs, arranged according to the SWOT structure,

to highlight the main strengths (S) and weaknesses (W) shown by the proposed AI
approaches, and to identify external opportunities (O) and threats (T) which could affect
their technical feasibility;

• the identification of some specific recommendations which could support the effective-
ness of the proposed AI approaches;

• the drawing of general recommendations regarding the integration of AI for rail safety
and automation, mainly encompassing indications for further investigation, including:

– further development of approaches, methods, models, technologies, and tools;
– further experimentation with additional data, case studies, pilot studies, and sce-

narios;
– applications to other areas and subsystems within the railway transport sector.

The set of recommendations will be used in WP5 to identify migration strategies and
roadmaps for AI integration in the rail sector.
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2. Introduction

This deliverable provides a critical examination of the work and the results obtained in WP2
also against the current state-of-the-art in railways. It reports some technical/implementation
recommendations and innovation needs that would support future investigations in the con-
text of AI for rail safety and automation.
The recommendations provided by this document can be subdivided into two main macro-
categories:

1. Recommendations coming from the critical examination of the Proofs-of-Concept
(PoCs) developed within the RAILS’s WP2 which would be potentially useful to sup-
port future development of approaches, methods, models, technologies, and tools
in the specific contexts of the PoCs and related areas. Specifically, the work con-
ducted for the Obstacle Detection scenario can be reused for similar purposes in other
perception-based railway applications, and the approach taken for the Virtual Coupling
scenario can inspire other control solutions.

2. General Recommendations, coming from lessons learned while both working at the
PoCs and investigating the state-of-the-art of AI in railways, which aim at providing
hints about practices and activities that would support the integration of AI across var-
ious railway applications.

The remainder of this deliverable is organised as follows. Chapter 3 summarises the findings
of WP1 about the state-of-the-art and promising research directions in railway safety and au-
tomation, as well as the documents and results produced during the project and addressing
the topics investigated in the context of WP2, including the related scientific publications
stemming from the project activities. Therefore, Chapter 3 provides the context and the
background of the discussion reported in the present deliverable. Chapter 4 and Chapter
5 respectively address critical examinations of the PoCs on “Obstacle Detection for Col-
lision Avoidance” and on “Cooperative Driving for Virtual Coupling of Autonomous Trains”.
Chapter 4 and Chapter 5 share the same structure: Sections 4.1 and 5.1 discuss a high-level
overview of the recent advancements in the context of the corresponding PoCs; Sections 4.2
and 5.2 present a bird-eye view of the investigative approaches; Sections 4.3 and 5.3 pro-
pose structured analyses of the implemented approaches in the form of SWOT (strengths,
weaknesses, opportunities, and threats) analyses; lastly, Section 4.4 and 5.4 highlight the
main recommendations resulted from the lessons learned while working at the PoCs. Then,
Chapter 6 discusses the general recommendations and some innovation needs that would
be required for the fast take-up of AI in railways. Lastly, Chapter 7 provides some concluding
remarks.
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3. Background

This section recalls most of the findings from the analyses carried out in the previous phases
of the RAILS project with specific emphasis on AI applications for “Railway Safety and Au-
tomation”. To better set the document background, Table 3.1 reports all the manuscripts
(deliverables and papers) resulting from the aforementioned research activities and speci-
fies the main contributions/results.

Table 3.1: Published Documents discussing AI for “Railway Safety and Automation”.
Focus Document Type Main contribution(s)

Taxonomy

Deliverable D1.1: Definition of a Reference
Taxonomy of AI in Railways [1]

PD 1. Delineation of a definition for AI in railway
2. Establishment of a taxonomy of AI in railway
3. A first overview of regulations for AI
4. Identification of Railway Subdomains
5. Preliminary mapping of existing AI applications on Railway SubdomainsArtificial Intelligence in Railway Transport:

Taxonomy, Regulations, and Applications [2]
SP

State of
the Art

Deliverable D1.2: Summary of existing
relevant projects and State-of-the-Art of
AI application in railways [3]

PD

1. Review of projects conducted worldwide (with emphasis on S2R projects)
dealing with AI in Railway Subdomains
2. Review of scientific papers dealing with AI in Railway Subdomains
3. Preliminary definition of future direction towards the integration of AI

A Literature Review of Artificial Intelligence
Applications in Railway Systems [4]

SP Extended review of scientific papers dealing with AI in Railway Subdomains

A Survey on Audio-Video Based Defect
Detection Through Deep Learning in
Railway Maintenance [5]

SP In-depth review of scientific papers dealing with AI for M&I applications
exploiting audio-video data

A Systematic Review of Artificial Intelligence
Public Datasets for Railway Applications [6]

SP In-depth review of publicly available datasets for each Railway Subdomain

Application
Areas

Deliverable 1.3: Application Areas [7] PD

1. Identification of relevant railway Application Areas for AI together with the
main challenges to be tackled for its effective integration basing on: i) the
review of projects conducted worldwide and the scientific literature dealing
with AI in railways; ii) suggestions from the Advisory Board; and iii) the results
from a comprehensive Survey submitted to Researchers and Practitioners
from different organisations operating worldwide
2. Delineation of basic AI usage guidelines to select the most appropriate AI
approach by taking into account: i) the goal; ii) the type of available data;
and iii) the required responsiveness of the AI system

Transferability
Deliverable 2.1: WP3 Report on Case Studies
and Analysis of Transferability from Other
Sectors [8]

PD

1. Review of AI-based emerging technologies developed in (transport and
non-transport) sectors other than railways
2. Identification of AI approaches that can be transferred to or adapted for
railway applications

Intelligent
Train

Control
A Vision of Intelligent Train Control [9] SP

1. Definition of a vision for the introduction of AI in Train Control Systems
2. Preliminary identification of Grades of Intelligence (GoIs)
3. Preliminary identification of Levels of Intelligence (LoIs)

PoCs
Development

Deliverable 2.2: WP2 Report on AI approaches
and models [10]

PD Identification of PoCs to be developed together with research questions,
methodology, reference datasets, AI and ML models, and expected results

Deliverable 2.3: WP2 Report on experimentation,
analysis, and discussion of results [11]

PD
Development of identified PoCs including model/architecture description,
data generation, training and validation, and evaluation and discussion of
results

Roadmap and Challenges for Reinforcement Learning
Control in railway Virtual Coupling [12]

SP

1. Investigation of the main challenges related to the feasibility of Railway VC
through AI techniques
2. Identification of potential AI methodologies to be transferred from automotive
to railway
3. Definition of a methodological PoC based on a Reinforcement Learning
control strategy and discussion on expected results

Recommendations
Deliverable 2.4: WP2 Report on identification
of future innovation needs and recommendations
for improvements [this document]

PD

1. Identification of sectorialized recommendations oriented at supporting AI
integration in WP2 PoCs’ topic and related areas
2. Identification of general recommendations aiming at supporting AI
integration across different railway applications

PD: Project Deliverable; SP: Scientific Paper
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Herein, we recall some of the results obtained within the first phase of the project as they
impacted the subsequent investigation carried out in WP2. First, a Taxonomy of AI in Railway
has been introduced and seven Railway Subdomains have been identified for the RAILS
investigation [1, 2]. Then, in Deliverable D1.2, for each of the subdomains, a review of
the State-of-the-Art (SOTA) of AI in railways has been developed by analysing i) research
projects conducted worldwide (with a particular focus on S2R projects) and ii) the scientific
literature. The latter analysis has been then extended in [4]. The main statistical findings we
deducted from the SOTA are reported in Fig. 3.1.

Fig. 3.1. Distribution of Scientific Papers and Research Projects per Railway Subdomain.

Notably, most of the contributions were related to the “Maintenance and Inspection” subdo-
main, while those referring to the “Railway Safety and Automation” macro area – i.e., “Safety
and Security” (S&S) and “Autonomous Driving and Control” (ADC) – presented a net sub-
division. As for scientific papers, the two subdomains of S&S and ADC resulted to receive
limited attention; conversely, research projects seemed to be quite sensitive to the topic of
S&S, but still limited contributions were found for ADC. Among the most investigated top-
ics, we had: i) Risk Assessment, which encompasses all the contributions dealing with “the
process of planning, preparing, performing, and reporting a risk analysis, and evaluating the
results against risk acceptance criteria” [13]; ii) Disruption and Anomaly Detection, includ-
ing the approaches oriented at identifying or predicting possible disruption and anomalies
that could harm the safety of railway lines; iii) Railway Accidents, involving the studies re-
lated to the prediction and the discovery of hidden patterns among hazardous events; and
iv) Energy-Efficient Driving, encompassing the contributions oriented at optimising energy
consumption.
In addition to this analysis, we also conducted further investigations in Deliverable D1.3 with
the aim of identifying the Application Areas that could benefit the most from the imple-
mentation of AI techniques. Among others, some of the Application Areas we identified for
“Railway Safety and Automation” are reported herein:

• Environment Monitoring, including solutions giving trains the capability of analysing
the surroundings;

• Anomaly Detection, encompassing approaches oriented at detecting anomalies in
railway components (e.g., trains’ on-board components) in order to promptly adopt
countermeasures and avoid potential threats;

• Obstacle Detection and Avoidance, involving systems aiming at detecting obstacles
(e.g., on rail tracks) that could interfere with the safe operability of trains;
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• Energy Optimisation, including approaches oriented at identifying adequate trains’
speed profiles in order to reduce energy consumption as much as possible;

• Smart Signalling aiming to control railway traffic safely and prevent trains from collid-
ing by leveraging modern technologies, such as cloud computing, wireless communi-
cation, location-based services, and computer vision.

• Adaptive Automatic Train Operations, dealing with the introduction of adaptive be-
haviours (based on learning capabilities) within the current ATO systems;

• Verification and Validation (V&V ), encompassing procedures for the safety assess-
ment of AI-aided railway systems. Due to the possibly unpredictable nature of some AI
approaches, their use creates concerns that need to be faced using appropriate V&V
processes to guarantee trustworthy AI and safe autonomy.

These and other Application Areas, together with related research directions, are discussed
in Deliverable D1.3. Deliverable D2.1 reports approaches and results from other sectors, in-
cluding challenges in assessing ML systems. Then, the research activities in WP2 focused
on autonomous train driving and control, and in particular addressed intelligent control, ob-
stacle detection, and cooperative driving. Details about the specific PoCs we developed are
given in Deliverables D2.2 and D2.3.
The investigations conducted within the aforementioned deliverables and all the other docu-
ments reported in Table 3.1 converged into the definition of the practical recommendations
that are discussed in the following chapters of this deliverable.

GA 881782 Page 10 | 38



4. A Critical Examination of the Obstacle Detection Proof-of-
Concept

As described in our previous Deliverable [11], in order to move towards full autonomy, trains
should be equipped with adequate sets of sensors and systems giving them the capability
of achieving full situation awareness in relation to the health status of the on-board compo-
nents and external threats or signals. With this PoC, we mainly focused on the latter aspect
and, to be specific, we investigated the possibility of adopting Deep Learning algorithms in
combination with data from a RGB camera to detect obstacles on rail tracks. Important to
underline, the aim of this PoC was not to propose the most suitable and effective solution for
this specific task, instead, we focused on investigating the opportunities that DL approaches
could introduce when realising Vision-Based Obstacle Detection Systems (VBODSs) to de-
tect obstacles both on rail tracks and in other railway scenarios.

4.1. Recent Advancements on Obstacle Detection

This section provides a brief overview of the latest developments concerning Obstacle De-
tection on Rail Tracks and concisely highlights the main shortcoming(s) of the VBODSs
discussed so far within the literature (to the best of our knowledge).
In the last few years, different obstacle detection systems have been investigated which typi-
cally leverage multiple sensors including, among others, LiDARs, radars, and cameras to be
able to detect obstacles at different distances. In addition, as discussed within the SMART
[14] and SMART2 [15] projects, such systems may also involve multiple sub-systems – in-
volving onboard, trackside, and airborne sub-systems – to monitor the environment from dif-
ferent perspectives. In these contexts, and if AI is involved, the usage of cameras is mainly
oriented (yet not limited) to the classification of the type of obstacles, while their localisa-
tion within the environment is demanded to the other sensors. As widely analysed within,
in our opinion, one of the most comprehensive literature reviews on vision-based obstacle
detection applications [16], camera-based systems can be used to both locate and identify
(i.e., detect) objects, however, to the best of our knowledge, they mainly rely on Supervised
approaches. Briefly, these kinds of AI models are trained to detect a set of elements that are
specified in advance; for example, a Deep Neural Network (DNN) can be trained to detect
some pre-specified obstacles such as cars, pedestrians, some species of animals, and so
on. The main problem with these approaches is that if an unknown obstacle1 has to be
detected, the DNN will most likely fail.

4.2. Bird-eye View of the PoC Approach

With this PoC, we aimed at understanding to what extent it would have been possible to
overcome this coverage issue by leveraging a single RGB camera, in order to discuss op-
portunities and shortcomings introduced by the simplest (and potentially cheapest) system
that is possible to implement.
Therefore, we studied the possibility of implementing a cheaper (or supportive) alternative,
compared to the systems introduced above, which exploits AI, artificial vision, and data com-

1An obstacle that has not been taken into account when training the DNN.
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ing from a single camera mounted in front of the train, with the specific aim of investigating
Unsupervised DL approaches that would potentially allow VBODSs to detect any obstacle
(and not just those specified a priori). To that aim, as deeply described in [11], we studied a
multi-modular architecture (reported in Fig. 4.1) which includes the following modules:

• Rails Detection Module (RDM): this module is oriented at extracting rail tracks from
the input frame. We first implemented a semi-automatic labelling approach based on
Self-Training and Transfer Learning to label data we collected, then, we implemented a
semantic segmentation approach based on U-Net [17] to achieve the aforementioned
goal.

• Object Detection Module (ODM): the purpose of this module is to detect objects (i.e.,
obstacles known a-priori) laying on the rail tracks. This module would most likely in-
volve a DNN trained in Supervised mode as described above. Given the large attention
this topic has received in the last years, also specifically within the rail sector [16], we
did not implement this module.

• Anomaly Detection Module (ADM): this module is oriented at detecting potentially
any kind of obstacle whether known or unknown a-priori. We refer to obstacles which
cannot be pre-specified as anomalies. In order to realise this module, we adopted an
anomaly detection approach. Practically, inspired by [18] and [19], we build a DNN
(named SSIM-VQ-VAE) and we trained it in an unsupervised manner on obstacles-
free data. Eventually, we obtained a DNN capable of producing an anomaly map which
highlights the anomaly (if present).

• Obstacle Detection Module: once the ODM will be implemented, this module will
simply merge the outputs from the ODM and the ADM, then, it will produce a map
that identifies the anomalous regions or identifies and classifies the objects if known
a-priori. Most likely, this module would not involve any AI functionality.

• Distance Estimation Module: the purpose of this module would be to estimate the
distance of the obstacles (i.e., both objects and anomalies) from the train. Worth men-
tioning, this task has recently been analysed within the SMART project (DisNet [20])
which seems to work properly when it comes to detecting the distance of the objects
(for which it is possible to know the dimensions in different circumstances). Differently,
as far as we know, further investigations would be required to estimate anomalies’
distances.

Fig. 4.1. An Architecture for Vision-Based Obstacle Detection.
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4.3. A SWOT Analysis of the PoC

In this section, we highlight the inner Strengths (S) and the Weaknesses (W) of the approach
we investigated and identified some external Opportunities (O) and Threats (T) that cloud
respectively support or challenge its technical implementation. Important to mention, this
SWOT analysis is not oriented at defining the market viability of the solution we investigated,
instead, it has been used to evaluate the approach in a structured manner. Fig. 4.2 reports
all the aspects that we found to be relevant, based on our investigation and tests, arranged
according to the SWOT structure.

Fig. 4.2. Relevant aspects from the Obstacle Detection PoC arranged according to the
SWOT Structure.

4.3.1. Strengths and Weaknesses

Increment of the Coverage. The architecture we investigated is oriented at increase the
coverage of VBODSs which typically rely on supervised approaches and are then ca-
pable of detecting only a pre-specified set of objects.

Modularity, Redundancy, and Scalability. The modularity of the architecture allows the
application of this idea also to already existing Object Detection systems without com-
promising their functioning. Indeed, assuming that another Object Detection system
exists (and is, to some extent, “reliable”) which detects potential obstacles within the
whole video frame and then applies post-processing to understand whether they are
on the track or not, the pipeline “RDM → ADM” can be simply applied in parallel without
interfering with the aforementioned system. The modularity also introduces a sort of
redundancy. Indeed, for each known obstacle, we would potentially have two detec-
tions: one from the ODM and the other from the ADM. Therefore, given that the two
modules adopt different DL models (which are either trained on different datasets or
process data in two different ways) it is quite unlikely that both would fail at the same
time. Redundancy can also be improved by scaling the sensors. In our analyses, we
considered data coming from a single camera, however, it would be possible to use
multiple cameras and always the same architecture and DL models. For example, as-
suming a sensing system with three cameras (each of which monitors the rail track
from a different angle), three VBODSs could be implemented, each of which will be
trained on data coming from only one of the aforementioned cameras. Therefore, at
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each instant, we could have three predictions that can be merged to i) filter out possible
prediction noises and ii) avoid possible miss-detections.

Cost-effectiveness and Potential Applications. As pointed out at the beginning of this
chapter, the main intent of this PoC was to analyse the potential of DL for vision-based
obstacle detection, and not to provide the best possible solution for any kind of trains or
railway lines (e.g., freight/passenger trains, high-speed railway lines, etc.). Although,
based on our tests, anomalies can be detected only within a range of about 70 meters,
which makes the ADM not suitable for high-speed railway lines or heavy freight trains
since their braking distance is higher than that values, there are other scenarios where
the investigated approach can potentially bring benefits and help to improve safety or
automation in a cost-effective manner. For example, the one-camera solution can be
adopted to assist the driver or to automatise those railway lines where trains run at
reduced speed (e.g., regional or urban lines). In addition, it could also be used in main
lines as low-speed complement and/or to assist the driver during procedures such as
the “Track Ahead Free” or to integrate a sort of “return to home” functionality [9]; i.e.,
in case of malfunctions would not allow trains to safely operate at their maximum effi-
ciency, a one-camera system could support the train to autonomously and safely reach
the nearest station by proceeding at reduced speed. In addition, such an architecture
can also be exploited to improve safety at Level Crossings (LCs), which is one of the
most sensitive railway assets; some LCs are already equipped with CCTV cameras
for security purposes, and these could be potentially exploited also to implement the
obstacle detection approach we propose so that it would potentially possible to save
costs due to sensors installation.

Anomaly Detection Distance and Computation Time. Diving into more technical as-
pects, the pipeline we implemented in Deliverable [11] encompasses only two of the
models that should compose the whole VBODS: the RDM and the ADM. According to
our results, as mentioned above, anomalies can be detected within a range of about
70 meters and the computation time required to process a single frame is about 476
ms. The former may not be a shortcoming, depending on the specific application the
architecture would be adopted for, however, actions are required to reduce the com-
putation time to meet real-time constraints. The pipeline encompasses two DL models
and post-processing algorithms to adjust the outcome of the DL models; these algo-
rithms are those that contribute the most in terms of computation time, especially the
one that post-processes the RDM outcome which, alone, takes about 363 ms. There-
fore, further investigations would be required to optimise these processing algorithms
and, hopefully, improve the processing speed of the DL models.

Long-rage Rail Track Segmentation. The RDM properly segments rail tracks within a
medium-long range, however, there are cases in which the last part of the track, i.e.,
that one that is the most far from the train, is not properly extracted. The causes lead-
ing to this phenomenon have already been identified in Deliverable [11] together with
some possible actions to overcome this issue. However, this is a crucial aspect to in-
vestigate as, given the architecture we identified, if tracks are not properly extracted, it
would not be possible to identify anomalies or objects.

False Positives. The ADM resulted not to be enough robust to false positives. In our tests,
we considered a rail track section with a tree projecting its shadow on the rail tracks
which is detected by the ADM as an anomaly. Issues of this kind may lead to unneces-
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sary slowdowns which will reflect in a reduction of the capacity of the lines and delays;
therefore, further investigations would be required to understand if such an issue can
be somehow mitigated.

4.3.2. Opportunities and Threats

Domain-specific Characteristics. One of the main issues we encountered during the de-
velopment of this PoC was the lack of suitable datasets to train and test DL algorithms.
They exist some datasets depicting railway scenes (e.g., RailSem192, we actually used
to pre-train our RDM) but, as far as we know, the lack of some domain-specific charac-
teristics that could potentially help DL models to perform better. As explained in detail
in Deliverable [11], the structure of railway lines does not change over time and this in-
variance can be exploited to build specific datasets (one for each railway line or one for
each train path) to train different DL models each of which is specialised in working on
a specific railway line. Practically, instead of building a single DL model, “overcharging”
it with data coming from different railway lines so that it would (probably) be capable of
working in any railway scenario, in our view, it would be better to build, for each railway
line, a different dataset. Then, multiple VBODS can be implemented (without vary-
ing the architecture or the adopted DL models), each of which is trained on a specific
dataset collected from a specific railway line. The main advantage is that the genera-
tion of different datasets (one for each railway line) could help to reduce the structural
aleatory the DL models should face so that the aleatory is “limited” to weather and light
conditions and possible intrusions. This aspect also leads to another advantage: if the
system focuses on a specific railway line and has been trained with multiple videos
depicting that line under different light and weather conditions, it would be highly prob-
able that, at run-time, the VBODS would analyse a scenario that is very similar (but, of
course, not identical) to something it has already seen during the training phase.

3D Editors and Simulators. Given what has been explained above, we leveraged the
MathWorks’ 3D editor RoadRunner3 to build a railway scenario depicting a specific
railway line from which to capture videos to train and test AI algorithms. In general, 3D
editors (or simulators) of this kind can bring huge benefit when it comes to generating
data for the development of PoCs for two main reasons: first, the latest technolog-
ical developments have given to these software (e.g., Unity4 or Unreal Engine5) the
capability of properly approximating the reality in terms of graphics, weather/light con-
ditions, and simulation of the behaviour of the assets; second, they allow to safely
generate anomalous events (e.g., obstacles on the tracks). Clearly, even though these
approaches can be extremely useful to develop PoCs, experiment DL models, and de-
fine suitable reasoning to address the problem, to evaluate the real effectiveness of the
implemented architecture, tests with real data should be performed.

Self-Training and Transfer Learning. Another implementability challenge that we encoun-
tered was data labelling. To efficiently train and test DL algorithms, data should be
properly labelled. The main problem is that, in many cases, data labelling is an ex-
tremely time-consuming process. In order to address this problem, we experimented
a Self-Training approach based on Transfer Learning (by pre-training the network with

2https://wilddash.cc/railsem19
3https://www.mathworks.com/products/roadrunner.html
4https://unity.com
5https://www.unrealengine.com/en-US
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a customised version of the RailSem19 dataset) to implement a semi-automatic la-
belling. Results seem to be quite promising but, as deeply explained in [11], further
investigation would be required to make this process as effective as possible.

Certifiability and Explainable AI. To conclude, the main threats come from the extreme
aleatory of the environment, the explainability of DL models, and the certifiability of
AI systems. As for the former, besides the railways’ structure (which, as mentioned
above, can be considered quite constant over time), the ADM should be deeply tested
and evaluated by considering hundreds or thousands of possible combinations be-
tween weather/light conditions and possible obstacles which may vary in dimensions,
colour, distance, and type (e.g., cars, rocks, trees, animals, etc.). Exhaustive tests may
not be feasible, however, at the current level of development of AI systems in general
and to the best of our knowledge, it would also be extremely challenging to statistically
identify possible failure modes and the Safety Integrity Level (SIL) of these systems
given their instability and poor explainability. Instability refers to the fact that different
DL algorithms may not be robust to slight variations of the input, i.e., specific pixel pat-
terns (which may also be imperceptible to the human eye) can completely fool the DL
model inducing it to produce completely wrong outputs. This is one of the main vulner-
abilities exploited by adversarial attacks which, for example, may apply specific pixel
patterns to the input frame to mislead the functioning of the system. In addition to that,
given that many AI approaches (especially DL ones) are opaque by design, it would be
extremely challenging to understand the reasoning that the DL model applied to obtain
a specific output given a specific input. From this perspective, eXplainable AI (XAI)
approaches, which are oriented at unrolling and, indeed, explain the behaviour of DL
models, may introduce several opportunities for the understandably and, consequently,
the certifiably of AI systems in railways.

4.3.3. Recommendations from the PoC

Herein, we report all the recommendations that specifically came out from the analyses we
conducted in the context of the PoC discussed in this chapter.
Exploit 3D Editors and Scenario Simulators. As mentioned above, 3D Editors and Sce-

nario Simulators offer different benefits when it comes to easily and safely collecting
data to develop proofs-of-concept. The latest technology developments give this soft-
ware the capability of approximating reality both in terms of the physics of the elements
and graphic characteristics. Therefore, we think their potential is worth to be taken into
account also in future research. In addition, ad-hoc railway software (as RoadRunner
is for automotive scenes) facilitates further the replication of railway lines or railway
assets (e.g., level crossings, bridges, etc.) and video data collection.

Exploit Task-Specific Characteristics. Our suggestion is to facilitate the tasks that DL
models should face by exploiting some characteristics which are peculiar to the prob-
lem that is intended to be addressed. For example, we adopted this strategy when
implementing the Rails Detection Module (RDM) in the context of our Obstacle Detec-
tion PoC. It would be possible to build a “general-purpose” RDM which is capable of
extracting the rail tracks of potentially any railway line, however, in our view, it would
be better to build a RDM for each rail line (or rail section) so that the DL model would
not face the structure aleatory introduced by multiple railway lines. By training a DL
model with data coming from the same railway line (or section) it will operate on, we
are practically feeding it with almost all the possible structural data so that, at run-time,
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it will most likely process a scenario which structure has already been seen during the
training phase. Therefore, the model should be “only” capable of generalising in terms
of light and weather conditions, and possible intrusions. Important to mention, in this
context, by “structural data” we mean the physical structure of the railway line, e.g., the
number of tracks, curves angles, the structure of the trackside equipment, and so on.

Modular Approaches for Redundancy and Robustness. At the current stage of develop-
ment, as far as we know, DL models, especially those oriented at processing images,
may not be so robust to specific changes in the input data. For example, some par-
ticular pixel patterns, which may not be known a-priori and can be both generated
through adversarial attacks or simply due to the aleatory of the environment, may fool
the DL models, i.e., induce them to produce a wrong output. Therefore, especially in
safety-critical scenarios, it would be advisable to adopt modular approaches so that
each model can potentially compensate possible malfunctions of the other modules
or extend their functionalities. In our Obstacle Detection PoC, the ADM is intended to
extend the functionality of the ODM which is typically implemented for these kinds of
tasks; however, the ADM could also act as a supportive module to confirm the output of
the ODM (e.g., by highlighting an anomaly in the same position of the object detected
by the ODM).
The redundancy can be scaled further by adding more sensors. Using different kinds
of sensors may be the best choice, however, it may also be the most costly in terms of
the cost of the sensors themselves and time to develop modules capable of processing
different types of data. A first step that could be taken is to introduce multiple cameras
monitoring the rail tracks from different angles. The object detection architecture would
always be the same, but it will be replicated for each camera and trained on data
coming from a particular camera only (i.e., Architecture “n” will be trained with images
coming from Camera “n” ). From a theoretical perspective, if the same architecture
is trained on two different datasets, the two resulting models (i.e., the combination
of a particular architecture and a specific dataset it is trained on) would most likely be
different in terms of parameters (i.e., they are two different systems); therefore, it would
be more unlikely that the same pixel pattern would fool both of them or, in general, that
both the models will miss-detect the same obstacle. Since this could ensure, to some
extent, more robustness to the whole detection system, we think that it would be worth
performing further investigations and extensive evaluations in this direction.
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5. A Critical Examination of the Virtual Coupling Proof-of-
Concept

In recent years, a new paradigm emerged in the railway field based on the concept of Vir-
tual Coupling (VC). It aims both to overcome the limitation of current fixed blocks railway
systems, and to go beyond the concept of moving block introduced by ETCS Level 3, by
considering the concept of a relative braking distance among trains. The idea, strictly re-
lated to the platooning concept in the automotive field, is to virtually couple two or more
trains via Train-to-Train (T2T) communication, so that they can travel in formation with the
same velocity while maintaining a desired inter-train safety distance among them. Being
railway VC a fairly new and visionary paradigm, much still needs to be done to give an
exhaustive answer to its numerous unaddressed issues. In the following, the most recent
advancements are summarised, with a particular focus on the emerging AI-based solutions
in VC control applications.

5.1. Recent Advancements on Virtual Coupling

Railway VC is currently a subject of intensive research. The interest in this field is indeed ex-
ponentially increasing in the last years: Fig. 5.1 shows the evolution of publication regarding
railway VC applications over time. A significant research sub-field is emerging which aims
at understanding the adoption of AI techniques in VC from a control viewpoint. Interesting
results investigate the use of ML techniques in VC control applications, whose main goals
are optimising the inter-train distances while preserving safe operations. [21,22] show a re-
cent comprehensive review of control techniques in railway VC, including AI-based emerging
applications. We emphasise that these recent results update the overview of the state of the
art addressed in RAILS Deliverable D2.2 [10]. In this perspective, the proposed PoC analy-
sis is meant to be a further step towards the identification of some operational and technical
issues related to the potential adoption of AI techniques in railway VC.

Fig. 5.1. Publications per year of VC applications in the railway field [21]
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5.2. Bird-eye View of the PoC Approach

In RAILS Deliverables D2.2 [10] and D2.3 [11], we addressed a methodological and exper-
imental PoC to explore the potential adoption of AI techniques from a control-based per-
spective. Specifically, we proposed a Deep Deterministic Policy Gradient (DDPG) control
strategy, which belongs to the Deep Reinforcement Learning (DRL) methods, to investigate
the effectiveness of the VC tactical layer functionalities, according to the conceptual VC view
proposed in [23]. The model considers a Virtually Coupled Train Set (VCTS) of heteroge-
neous autonomous consists able to share information on their current position and speed
with the other communicating trains via a T2T wireless communication network. The desired
reference behaviour for the convoy is imposed through a Train-to-Infrastructure (T2I) com-
munication network by the Radio Block Center (RBC), which acts as a virtual leader (see
Fig. 5.2 for a conceptual architecture of railway VC). The proposed DDPG controller had

Fig. 5.2. Conceptual architecture of VC: VCTS of autonomous consists receiving
information from RBC through the T2I communication network (blue lines), and sharing
information among each other through the T2T communication network (orange lines).

the final aim to guarantee VC even in complex scenarios, despite the presence of: uncer-
tainties in train dynamic parameters; heterogeneity in trains dynamics (e.g., different braking
capabilities, different speed categories); uncertainties in track conditions (e.g., adhesion
factors, gradients profile); external disturbances (e.g., wind speed) and unknown exogenous
forces due to the curvature and the slope; uncertainties in reaction delay when performing
braking manoeuvres, which can influence the inter-train distance; uncertainties in train lo-
cation information; on-board speed error measurements. Therefore, it has been tested and
validated through an ad hoc simulation platform in different operational scenarios and con-
sidering some basic VC manoeuvres: VCTS forming, VCTS splitting, and leader tracking.
Preliminary results showed its effectiveness in guaranteeing the achievements of the VC
requirements in the considered operational scenarios. Furthermore, a comparison analysis
with a model-based MPC control strategy highlighted some potential advantages that the
use of DRL techniques could provide in this field with respect to traditional models.
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5.3. A SWOT Analysis of the PoC

In the following, an in-depth analysis of the methodological and experimental PoC proposed
in the previous deliverables is carried out, arranged according to the SWOT structure. We
highlight that a SWOT analysis which explores demand trends and operational scenarios in
railway VC has been provided in [24], followed by the definition of scenario-based roadmaps
as a useful tool for stakeholders to identify potential risks and criticalities in the deployment
of VC [25]. In this context, the focus of the following analysis to report the major strengths
(S) and weaknesses (W) shown by the proposed AI technology, and to identify external
opportunities (O) that could support its technical feasibility, as well as some open challenges
related to the main threats (T) emerged from the PoC (see Fig. 5.3 for an overview of the
proposed SWOT analysis).

Fig. 5.3. Relevant aspects from the Virtual Coupling PoC arranged according to the SWOT
Structure.

5.3.1. Strengths and Weaknesses

Increase in lane capacity and energy saving. In the proposed PoC, some evidences
have arisen from the comparison analysis with a traditional MPC approach which
highlighted some potential strengths of the proposed AI control strategy. The main
evidence is represented by an increase in lane capacity: the proposed AI approach
showed a better reference tracking, thus optimising the lane exploitation, while at the
same time guaranteeing a relevant reduction in energy consumption. It is worth high-
lighting that capacity optimisation and energy saving are considered among the main
objectives pursued by the VC paradigm with respect to the currently applied and in
development fixed and moving block railway systems; thus, these strengths could have
a significant weight in the evaluation of the proposed AI methodology.

Flexibility and robustness. Another advantage is represented by the inherent nature of the
DDPG approach itself. Namely, being a model-free and a learning-based approach, it
is suitable to face with heterogeneous train features and environments without having
any prior knowledge of the train dynamics and the travelling scenarios. This guar-
antees more flexibility compared to model-based approaches, which require detailed
modelling of the train dynamics and the surrounded environment, and thus must be
adapted to the different train characteristics and the encountered operational scenar-
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ios. Furthermore, the proposed approach can better address uncertainties and inac-
curacies due to unknown track conditions and external disturbances, thus improving
robustness with respect to traditional models. As a consequence, the proposed strat-
egy could better cope with the complex and uncertain railway real-life scenarios.

PoC as benchmarck. As discussed in Section 5.1, the interest of the research community
in understanding feasibility of AI technologies in railway VC is increasing in the last
years. Towards this direction, the proposed PoC could act as a benchmark for future
research. Namely, additional Key Performance Indicators (KPIs), operational scenar-
ios, and approaches could be considered to improve knowledge on the potential usage
of RL control strategies in the field of VCTS paradigm.

Validation of tactical and operational layers. The proposed approach is focused on the
tactical layer functionalities: it coordinates the actual platoon movements and manoeu-
vres from the instance a joining request is received until the platoon is dissolved. To do
this, our DDPG control strategy computes in real-time the trajectory that each consist
should follow in order to allow the VC. In the validation phase carried out in Deliver-
able D2.3 [11], we assumed that the operational layer located on each train (which
should embed an Automatic Train Operation system with Grade of Automation GoA4)
is able to automatically drive each consist guaranteeing the execution of the computed
trajectory without any deviation from the latter. This assumption may be considered a
limitation of the proposed approach and should be better investigated. Therefore, an
extensive validation phase could be conducted by considering an architecture encom-
passing both the tactical and the operational layers to assess the effectiveness of the
local train controllers to perform the tactical layer commands and to guarantee VC in a
safe manner.

Computational time. Eventually, computational time should be better examined, since it
could affect the performance of the proposed control strategy in real world scenarios.

5.3.2. Opportunities and Threats

Advanced railway simulation platforms. As already mentioned in Deliverable D2.2 [10],
one of the main issues of the DRL methods is represented by the need of ad-hoc
simulators for both the training and validation phases. Namely, these methods work
in high-dimensional and continuous action spaces, which are difficult to explore effi-
ciently; therefore, any datasets would be inadequate for the purpose. To the best of
our knowledge, even though some simulators are currently available for railway virtual
testing and RL training (see for instance SUMO [26] and Anylogic [27]), they do not al-
low the possibility of considering the VCTS paradigm, which also requires to take into
account T2T communications and the involved dynamical phenomena. In view of this,
an ad-hoc simulation platform has been provided in the PoC for the training and vali-
dation of the proposed DDPG approach. However, although this simulator takes into
account different operative scenarios, train characteristics, track conditions, and ex-
ogenous factors, this is just a first attempt along this direction: future works will include
the enrichment of the proposed simulation platform by encompassing other crucial as-
pects of trains dynamics and T2T communication, such as the multi-body modelling,
the wheel-rail contact effects, suspensions effects and communication losses, etc., so
to obtain a more accurate model of train dynamics able to emulate as much as possi-
ble the real systems. The development of advanced railway simulators, indeed, could
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represent a great opportunity for the effectiveness of our approach, and basically of
DRL methods, which require extensive training and validation activities.

Emerging T2X communication technologies. Train-to-Everything (T2X) communication
is one of the enabling technologies for the exploitation of the proposed VC control
strategy, since its performances strongly depends on the communication latency. The
current communication systems that support data rates up to 100 Mbps, operating at
frequencies lower than 6 GHz, may not be sufficient to handle the future communica-
tion requirements of the railway industry. One potential solution to this challenge is
represented by 5G technology, which is expected to play a fundamental role in Internet
of Things (IoT) applications that require more reliable and low-latency communication.
Namely, one of the key benefits of 5G technology is the reduction in latency thanks
to the use of millimeter waves, which operate at higher frequencies than the exist-
ing technologies used in 4G. [28]. However, the implementation of 5G technology in
the railway industry requires careful consideration of various factors, including signal
propagation, network architecture, and cybersecurity. Additionally, the integration of
5G technology with existing railway systems and infrastructure may require significant
investments and modifications.

Explainability and Explainable RL. Explainability may be considered a critical aspect for
the proposed DRL algorithm, and more generally for the widespread acceptance of AI
systems. It refers to the ability of the algorithm to provide transparent and interpretable
justifications for its decisions and actions in order to enable humans to understand the
reasoning behind the model’s behaviour. An explanation for the automated decisions
is especially crucial in safety critical applications, where understanding the causes of
actions or decisions is a natural human requirement. To date, although RL models can
be considered reliable, the effectiveness of these systems is limited by their current in-
ability to explain their decisions and actions to human users. Namely, because of their
inherently probabilistic nature, their specific processes of decision-making are currently
almost impossible to understand. In this field, Explainable Reinforcement Learning
(XRL) [29], a relatively new subfield of XAI, is emerging with the aim of supporting the
spreading of RL-based applications with diverse audiences, requiring ethical, respon-
sible and trustable algorithms. Constructing explainable intelligent driving systems is a
viable promise for the trustworthy use of RL control algorithms for autonomous trains
and VC.

Standards and regulations. The above concept of explainability should be accompanied
by the compliance of the proposed approach with safety standards and principles es-
tablished by transportation regulators. However, this expectation does not coincide
with the current requirements of the European railway regulations for the functional
safety of railway systems and their verification procedures, which do not account for
AI-based applications. Therefore, the certification of the proposed DRL autonomous
and cooperative train control system is an open challenge: while traditional train con-
trol sub-systems can be certified on the basis of today’s CENELEC standards, this is
not the case for all AI-based algorithms. Thus, the certification of such AI systems in
railways will require extensions or modifications of the current standards, or the devel-
opment of additional ad-hoc standards.
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5.3.3. Recommendations from the PoC

In the following, the main recommendations emerged from the above SWOT analysis are
summarised.
Development of advanced railway simulators for virtual testing. The development and

availability of advanced railway simulation platforms for virtual testing could contribute
to the actual exploitation of DRL approaches in the railway field, since the per-
formances of these methods is strictly related to exhaustive training and validation
phases. Emerging paradigms such as railway VC and its related enabling technolo-
gies should be taken into account in order to allow the virtual testing and validation of
RL-based control strategies for VCTS.

Validation of the VC architecture. The assessment of the proposed DDPG controller shall
include the verification and validation of the VC architecture according to the vertical
layer structure proposed in [23]. As a recommendation emerged from the PoC, a first
step forward could be that of considering the validation of both the tactical and opera-
tional layers, in order to assess the effectiveness of the operational layers located on
each train to safely perform the VCTS manoeuvres computed by the proposed DDPG
control strategy.

Exploring the potential of XRL for VC applications. As stated before, the proposed
DDPG approach is affected by explainability issues related to its inherently proba-
bilistic nature. In an attempt to overcome explainability limitations, the effectiveness of
XRL methods could be investigated for the future deployment of VC control strategies.
Indeed, some promising approaches to enhance the explainability of RL models are
emerging [29]. Although XRL methods need to be further assessed, they could be cru-
cial for the future exploitation of RL techniques in the real world applications. Namely,
they could allow the development of explainable, trustable and responsible algorithms
that could be deployed in practice and can be more understandable by the general
public.

Extension of the current standards and regulations. The certification of the proposed
control system is an open challenge, since, as highlighted in the previous section,
current CENELEC railway standards do not explicitly account for the certification of
safety critical AI-based railway systems. This is indeed a general issue which goes
beyond the specific PoC, since it affects the actual exploitation of AI in railways ap-
plications. Certifications of AI-based algorithms in the railway field will indeed require
the introduction of new concepts and requirements as well as the extension of the
current standards. General recommendations and innovation needs for safety-critical
railway functionalities can be found in Chapter 6, in which new concepts are introduced
that could support the identification of specific requirements in the field of autonomous
trains applications.
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6. Recommendations and Innovation Needs

6.1. Deal with the Data Challenge

The problem of data availability (and labelling) is a cross-area, which means that we had to
face it when addressing the majority of the PoCs developed within the various work pack-
ages of the RAILS project. This problem is described more in detail in Deliverable D3.4,
which summarises our recommendations on AI for railway maintenance and inspection ap-
plications, where tons of data are typically required to properly set up defect detection/failure
prediction systems.
However, as highlighted by the PoCs discussed in this document, this problem also affects
the integration and development of AI approaches for railway safety and automation appli-
cations. In the following, we discuss the main directions we think could be useful to promote
the development of AI approaches in this context, while we remand to Deliverable D3.4 for
additional insights on the topic of data challenges.
Premised that data collected in real scenarios should always be preferred, there are some
alternatives that can be exploited to generate data to be used to set up a suitable strategy
for the resolution of a railway problem through AI approaches. In this context, our recom-
mendations are:

Exploit 3D Editors and Scenario Simulators. As widely discussed in Chapter 4, the latest
technological developments have given to these software the capability of approximat-
ing reality with a high degree of fidelity, both in terms of the physics of the objects and
graphics. The advantage compared to real data collection is that these software gives
the possibility of re-creating potentially any kind of event and thus allows the collection
of various kinds of data in a reduced amount of time. In addition, it would be possi-
ble to: i) safely simulate harmful situations; and ii) avoid any problem related to data
privacy.

Exploit Data Augmentation and Transfer Learning. In case real data are available, but
only in a limited amount, it would be possible to exploit some techniques (e.g., those
recently reviewed in [30]) to i) generate synthetic data starting from the real ones or
ii) simply apply transformations (e.g., cropping, rotation, stretching) to increase the
dimension of the datasets. Generative Adversarial Networks (GANs) are the most
common example when it comes to generating images; they allow for the generation
of real-like synthetic data which are, indeed, generated starting from the distribution of
data collected in real scenarios.

Exploit Automatic / Assisted Labelling. Once data have been collected, whether they are
real, synthetic, or a mix of these, they must be properly labelled to train and test AI
models. The labelling process is typically performed manually by human operators,
which implies costs in terms of time and human resources especially if hundreds of
thousands of data should be labelled.
However, there are three main options that can be exploited to reduce labelling efforts.
First, 3D Editors may include functionalities to automatically label objects in the gener-
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ated scene (e.g., Unity’s Perception Package1), in these case, in addition to generating
data, the software would also automatically generate labels. Second, most of the la-
belling software and tools that have been developed in the last years, especially for
image/video labelling, include functionalities to assist human operators in the labelling
processes2,3,4,5; if properly used, these can extremely facilitate this task. Lastly, it
would be possible to exploit AI approaches to create semi-automatic labelling algo-
rithms based, for example, on self-training in order to manually label only a subset of
data and then automatically generate labels for the remaining data. We adopted the
last strategy to develop an algorithm to semi-automatically label data in the context of
the Obstacle Detection PoC (see Deliverable D2.3 [11] for additional details); it resulted
to be viable but further analyses would be required to understand its real effectiveness
when it comes to small details in the images.

To conclude, we think that synthetic datasets can be used as benchmarks for the instigation
of AI approaches and the definition of a suitable strategy oriented at improving safety and
automation in railways. However, these kinds of data could be extremely useful only at
the proof-of-concept level; once a strategy has been defined and a potential AI approach
identified, their effectiveness should, obviously, be tested with real data.

6.2. Promote public challenges based on safety cases

Strictly related to data availability, the definition of public challenges (to be intended as com-
petitions) may contribute to the fast take-up of AI in railways. In the past years, challenges
like those proposed on the MS COCO6, ImageNet7, and RailSem198 datasets have pro-
moted the technological advancement of AI applications on some specific topics with some
solutions achieving state-of-the-art performances. The same can be done in railways, by
establishing challenges for those railway problems that are intended to be tackled so that all
the interested researchers and practitioners could participate in their resolution.
Important to mention, in order to propose proper challenges, there are some factors that
should be taken into account:

• First, a challenge requires a shared dataset that all the participants should use to train
and validate their AI models. In our view, this can be mitigated by generating synthetic
datasets as we have done for some of the PoCs developed within the whole RAILS
project. In this way, it would also be avoided any problem related to data privacy.

• Second, each challenge should encompass a series of requirements and constraints
that should be adequately established by experts and the data for the challenge should
be properly collected or generated so that they reflect these characteristics. The main
problem in this case is that, in our view, this should be done in a centralised way. An
authoritative entity, which could be an alliance between railway stakeholders and/or

1https://docs.unity3d.com/Packages/com.unity.perception@1.0/manual/index.html
2https://it.mathworks.com/help/vision/ug/get-started-with-the-image-labeler.htm
l

3https://www.v7labs.com
4https://keymakr.com/annotation-tool.php
5https://segment-anything.com
6https://cocodataset.org/#home
7https://www.image-net.org/challenges/LSVRC/index.php
8https://wilddash.cc/benchmark/summary_tbl?hc=semantic_rob
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railway experts, should be in charge of: i) defining the problems to be addressed; ii)
establishing proper criteria, requirements, and constraints so that the challenge would
reflect as much as possible the real problem; iii) identifying guidelines for the realisa-
tion of the dataset(s); iv) generating/collecting the required data; and v) managing the
results of the competitions.

Despite these tough issues, we think that competitions of this kind, i.e., oriented at defin-
ing benchmarks for the resolution of specific railway problems, could effectively promote
technology advancements in the rail sector.

6.3. Introduce new concepts in risk assessment

As a matter of fact, when dealing with safety-critical functionalities, the systems’ certifiablity
is of paramount importance. However, as also emerged from the aforementioned PoCs, the
current state of development of AI applications does not allow, in most cases, the correct
definition of failure modes and the precise identification of the SIL of AI systems. Therefore,
new concepts should be taken into account in order to promote the integration of AI in safety-
critical railway applications.

6.3.1. Safety Envelope as a Barrier for Intelligent Train Control

An opportunity to mitigate the certifiability issue and start introducing AI in Autonomous
Train Driving functionalities is given, as described in [9], by the Safety Envelope paradigm
[31–33]. The main idea is that autonomous trains should move within an area (the Safe Op-
erational State Space (SOSS) defined by the Safety Envelope) that is free from any hazard
and is continuously computed and updated; any action that would bring the system outside
the safety envelope should be detected and mitigated or aborted.
An example can be made by taking into account two systems that have already been widely
discussed in the rail sector, i.e., the Automatic Train Protection (ATP) and the Automatic Train
Operation (ATO). The separation of concerns between ATP and ATO can be framed in the
concept of Safety Envelope as follows. From a high-level perspective:

• The ATP is responsible for ensuring that the correct dynamic speed profile is applied in
order to avoid derailments, collisions, and keep a safe distance between trains. There-
fore, in the context of the Safety Envelope paradigm, the ATP would be the “checker”
and would be responsible for computing the SOSS within which trains can operate
safely.

• On the other hand, the ATO, which is oriented at automatically taking actions to move
trains from one station to another, would be the “doer” and its actions would be checked
by the ATP. For example, in case the ATO would accelerate over the maximum speed
computed by the ATP, the ATP itself would perform some countermeasures to ensure
safety (e.g., application of emergency braking).

Fig. 6.1 graphically shows this relationship by means of a flowchart that integrates some
notions typical of the Activity Diagrams. The start (black circle) would cyclically happen any
time the environment changes that much to require the computation of a new SOSS or when
the ATO initially “Takes an Action”. The end (white circle with inner black circle), instead, is
only related to the operations that the ATO would perform given that the ATP is continuously
operating on the railway line. Lastly, the decision nodes are related to the following ques-
tions: “Safe?” stands for “Does the action keep the system within the SOSS?” ; “Stop?” is
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Fig. 6.1. ATP and ATO Concerns According to the Safety Envelope Paradigm.

related to “Is the problem too critical to require a full-stop of the system (e.g., activate the
emergency brake to avoid collision)?” ; lastly, “EoM” stands for End-of-Mission, i.e., “Did the
mission of the system end?”. In this scenario, only the “Computation of the SOSS” and the
operation of “Checking the Action” must be rated at SIL4, leaving the decision of how to
optimally run the train (i.e., the actions taken by the ATO) to non safety-related and possibly
complex software [9]. We report herein the requirements that, in our view, must be met in
order to make possible the application of this paradigm in railways:

1. Safety Envelope computation must be based on sound and certified principles includ-
ing not only information like the received Movement Authorities as in ETCS, but also
any sensor input that contributes to the delineation of the safety envelope (e.g., the
distance from leading train in VC).

2. Safety Envelope computation must consider all uncertainties on measures from sen-
sors (position, distance, etc.) that impact the safety of train actions (e.g., braking dis-
tance) on a probabilistic basis. Then, the probability of producing a too permissive
safety envelope (which can potentially lead to unpleasant events) must be kept under
the limits given by SIL4.

3. Safety Envelope computation software must be formally provable through proper for-
mal verification techniques in order to ensure that they meet the above principles.

4. Safety Envelope checking operations must focus only on verifying that driving com-
mands to actuators do not bring the train outside the current SOSS. Such operations
must be available at any time.

5. Safety Envelope checking software must be formally provable through model-checking.

Basing on this idea, it would be possible to move, step-by-step, towards Intelligent Train
Control as discussed below.

6.3.2. Introducing AI in Train Driving: Grades of Intelligence.

Railway lines are typically classified according to four Grades of Automation (GoA), sum-
marised in Table 6.1, depending on which kind of Automatic Train systems are implemented
on that line. However, current GoAs do not allow to include in the classification Autonomous
and/or Intelligent functionalities that railway systems could implement. In order to consider
these aspects, a new classification should be introduced.
First, it would be important to underline the relation that holds among Automatic (Automa-
tion), Autonomous (Autonomy), and the role of AI [9]:
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Table 6.1: Grade of Automation (GoA) levels.

Level Description

GoA 0 Train operations are manually supervised by the driver, no automation.
GoA 1 Train operations are manually supervised by the driver supported by ATP.

GoA 2 Semi-automatic train operation. ATO and ATP systems automatically
manage train operations and protection while supervised by the driver.

GoA 3 Driverless train operation with on-board staff handling possible emergencies.
GoA 4 Unattended train operation, neither the driver nor the staff is required.

Table 6.2: Automatic Train Management Systems.
System Description

Automatic Train Operation (ATO) Used to automatically drive the train and stop at stations when needed.
Automatic Train Protection (ATP) Used to automatically protect the train by applying brakes when needed.
Automatic Train Control (ATC) Both ATP and ATO are in place to ensure full control of the train.
Automatic Train Supervision (ATS) Used to manage train schedules and coordinate routes along whole tracks.

• Automation refers to the ability of a system to automatically or semi-automatically (i.e.,
without or with partial human intervention) perform a given task based on pre-specified
rules.

• Autonomy extends the concept of Automation and refers to the ability of a system to
dynamically adapt to unexpected scenarios by taking independent decisions.

• In this context, AI has the role of making vehicles capable of learning from experience
and taking autonomous decisions to adapt to changes in the environment.

According to these definitions, current driverless trains (e.g., those running in GoA3/4 metro
lines), which are often considered autonomous rather than automatic, cannot be considered
“intelligent” since they miss any learning and adaptation capabilities.
As the second and last point to consider, given the consideration above, new concepts for
Intelligent Train Management Systems should be introduced that build upon and extend
Automatic Train Management Systems; these are summarised in Tables 6.2 and 6.3.
All these considerations converge in the definition of new Grades of Intelligence (GoIs)
which, extending in a complementary manner the already existing GoAs, could help to clas-
sify AI-supported railway lines and introduce AI in railways towards full-autonomous trains
[9]:

• GoI1: this level represents limited or no autonomy. It includes ATC implementations
where AI is not used or it is used for limited functions such as optimisation within ATS
(i.e., ITS).

• GoI2: this level supports partial autonomy by including only ITO (GoI2.1) as an adap-
tive ATO with energy, capacity and/or comfort optimisation capabilities, or only ITP
(GoI2.2) for driving assistance and/or as a low-speed backup system in case of ATP
unavailability or limited supervision.

• GoI3: this level represent full autonomy by including both ITO and ITP, although no
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Table 6.3: Intelligent Train Management Systems.
System Description

Intelligent Train Operation (ITO) Extends ATO functionalities by applying intelligent and adaptive behaviour in
order to optimise passenger comfort, energy consumption, and line capacity.

Intelligent Train Protection (ITP)

Supports or potentially replaces ATP. If the ATP is not available (e.g., in
old railway lines or when ATP failures oblige to partial supervision), ITP could
replace ATP by, e.g., automatically recognising signals and/or obstacles. If the
ATP is available, ITP can be a useful complement to detect events that are not
managed by ATP.

Intelligent Train Control (ITC) As for the ATC, ITC expects to have both ITO and ITP systems operating in a
fully-connected environment.

Intelligent Train Supervision (ITS)
Extends ATS functionalities by exploiting AI to efficiently optimise (or maximise)
railway line utilisation and average throughput by providing appropriate train
routing solutions (e.g., to promptly respond to disruptions).

advanced learning and adaptation capabilities is considered. For instance, at GoI3,
the artificial vision algorithms of ITP can be trained only once, e.g. to detect on-track
obstacles, and never updated.

• GoI4: as GoI3, this level supports full autonomy by including both ITO and ITP, but
it also requires advanced learning and adaption capabilities (e.g., online learning)
and a fully-connected and dynamically updated ecosystem (e.g., based on ex-
tremely reliable train-to-train and train-to-infrastructure connections). GoI4 should be
supported by higher levels of fog/cloud intelligence (introduced below) by using exter-
nal AI models for big data analytics, such as those enabled by Digital Twins.

GoI levels are graphically shown in Fig. 6.2.

6.3.3. Bridging the Gaps towards GoIs

In order to move towards GoI1 and GoI2, the Safety Envelope paradigm, as explained above,
can be exploited to establish safety barriers for the safe operability of the ITS and ITO sys-
tems.

Towards GoI1. As mentioned, GoI1 does not introduce any autonomy in relation to train
driving; instead, it could involve some advanced ATS functionalities based on AI (i.e.,
the ITS). Despite the fact that at the current level of development it would be chal-
lenging to estimate the SIL of the ITS, it would be possible to exploit the Interlocking
Subsystem (IXL), which is rated at SIL4, as the Safety Envelope for the ITS.

Towards GoI2.1. Similarly to what has been discussed above, the ATP, which is rated at
SIL4, could act as the Safety Envelope for the ITO. As an example, the ITO could
implement a functionality based on RL to intelligently compute the optimal train speed
to save energy and ensure passenger comfort; in case the computed speed would
exceed the breaking curve computed by the ATP, this would take the proper action to
protect the network.

Towards GoI2.2 and GoI3. GoI2.2 expects the ITP to be implemented, but not the ITO;
differently, GoI3 expects that both systems are operating. In these cases, AI would be
directly involved in the computation of safety functionality, in case no human operators
would be involved to manually check the correctness of ITP decisions. To the best of
our knowledge, although theoretically possible, such levels seem not to be practically
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Fig. 6.2. GoI Levels.

reachable yet as ad-hoc standards and regulations would be required to quantitatively
assess the trustworthiness of AI systems, together with legal, ethical, robustness, and
explainability implications.

Towards GoI4. The same considerations as above for the combination of ITO and ITP
hold also in this case, however, GoI4 also expects to have a fully-connected envi-
ronment from which trains can receive/collect information at run-time to promptly take
autonomous decisions. In order to achieve that, it would be necessary to establish
a new view for the railway environment which specifically identifies how AI would be
distributed at different Levels of Intelligence (LoIs) (i.e., edge, fog, and cloud) and the
role that the AI systems deployed at the different LoIs would have in the context of
intelligent fully-connected railways (or ITC).

6.3.4. Distribute Computations over different Levels of Intelligence (LoIs)

Fig. 6.3 shows an overview of the distribution of AI at different levels which are necessary to
implement autonomous railway control and supervision. The Levels of Intelligence include:

• Edge Intelligence: AI systems mounted on-board the assets (e.g., trains) would be
in charge of implementing local autonomy (e.g., on-board obstacle detection). They
may be characterised by possible limitations in terms of computing power, due to con-
strained devices, but they would also be advantaged in terms of response times and
data security, due to shorter communication links.

• Fog Intelligence: AI systems at this level would monitor a cluster of assets and man-
age their interconnections in order to achieve a comprehensive optimisation of a rail-
way sub-system. For example, fog intelligence may represent trackside control where
capacity optimisations (e.g., VC) can be orchestrated based on a larger knowledge of
what is happening within a whole railway line.
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Fig. 6.3. Levels of Intelligence in Railway Control and Supervision.

• Cloud Intelligence: AI systems deployed at this level would aim at elaborating big
amount of data, possibly coming from multiple assets installed worldwide, in order to
collect information and knowledge to be either shared with the AI systems operating
at lower LoIs or exploited to implement more comprehensive systems. For example,
a failure prediction system can be trained with data coming from multiple installations
of the same asset. These would most likely include more information about potential
failures compared to data obtained by monitoring a single asset only.

Fig. 6.4. Integrating LoIs and Safety Envelope.
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An example of how Autonomous Trains functionalities and the concept of Safety Envelope
can be distributed according to these LoIs is given in Fig. 6.4, which extends the example
given in Fig. 6.1. Basically, an Autonomous Train receives information from other vehicles
or the trackside equipment, then, if the mission has not ended, it integrates this information
with those retrieved from the onboard sensors to autonomously define the action to take.
Then, the action is processed by the Trackside Systems which act as the safety Envelope
as discussed in Section 6.3.1. Hence, if the action is considered to be safe, the process
restarts, otherwise, it depends on the severity of the problem that occurred. If drastic ac-
tion is required to ensure safety, the Autonomous Train would be notified to stop or activate
some emergency procedure, otherwise, it will be notified to process some corrective ac-
tions. In this extended example, besides the computation of SOSS and the check operation,
also the various communication systems and the “Stop Execution” and “Implement Protec-
tive Action(s)” operations must be rated SIL4, as they would be extremely critical to avoid
unpleasant consequences. This means that, at the current stage of development, such
functionalities should not involve any AI and must have full control over AI-aided functions or
must have higher priority.

6.4. Exploit the potential of Digital Twins

Among the various definitions that have been given for Digital Twins (DTs) [34], we rely
on the concept formulated in [35]: “DTs concentrate on bilateral interdependency between
physical and virtual assets”. Therefore, a DT is not a simple digital model of a real asset,
instead, “a DT is an accurate model of a physical entity which is kept alive at run-time and
updated with real-time data collected from (IoT) monitoring devices” [36]. In other words, at
each time instant, a DT is a digital replica of the corresponding physical asset and represents
its current state of evolution. DTs of this kind could introduce several opportunities towards
the automation of railway lines.

Fig. 6.5. Integrating DTs and LoIs to Ensure Protection in Case of Assets’ Failure
(excerpted from [37]).
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DTs and LoIs. The architecture in Fig. 6.3 would build upon the DT paradigm: each asset,
whether it is a single entity (e.g., a train) or an ensemble of entities (e.g., a railway
line), would be managed through the corresponding DT. Therefore, in addition to direct
communications between physical assets at the Edge Level (e.g., T2T and T2I), it
would also be possible to exploit communications between DTs at the Fog or Cloud
levels to take decisions that would optimise operations on a railway line and, at the
same time, increase the level of safety. An example is given in [37] and, even though
it is strictly related to maintenance at level crossings (a WP3 PoC), we think it could
be relevant also in this case to understand how DTs and LoIs could be integrated
to ensure protection and increase the safety of railway lines. As shown in Fig. 6.5,
assuming it would be possible to generate DTs for both trains and level crossings,
these can be exploited at the Fog Level to promptly adopt countermeasures in case of
assets’ failure. Additional details are given in Deliverable D3.2 [37].

Predicting Assets’ Evolution with Cognitive DTs. If DTs evolve with the corresponding
assets, it would be possible to make copies of DTs (which represent the physical as-
sets at a given time instant) and stress them with various inputs to study the potential
evolution of physical systems and/or generate data that can be used to train AI mod-
els. Cognitive Digital Twins (CDT) [38], i.e., DTs enhanced with cognitive capabilities
making them capable of learning and reasoning, would introduce several opportunities
in this direction as these kinds of DTs not only evolve with the physical counterpart but
would also be able of simulating their behaviour.

DT-in-the-Loop for testing and validation. In addition to what is described above, DTs
can also support the development, validation, and testing of railway systems [39], in-
cluding those leveraging AI for Autonomous Train Driving. DTs could help to overcome,
at least in the first phase of development, some challenges introduced by on-field tests
including elevated costs and time required, limited scenarios (as it would not be pos-
sible to evaluate scenarios different from those captured through sensors and it would
be extremely time-consuming to wait for all possible evolution of the environment), and
high risk in case of failures. DTs can be exploited, especially if combined with Mixed
Reality (MR) and AI, to evaluate the behaviour of systems and their functionalities simi-
lar to what happens with Hardware-in-the-Loop. As spotted within the Automotive field,
MR has shown great potential in linking physical vehicles with their digital counterparts
making both of them susceptible to events occurring either in the real or in the virtual
world [40, 41]. As a simple example, this can be exploited in the rail sector to test the
physical reaction of a train (running on an obstacle-free track) and its obstacle detec-
tion system to obstacles (of any kind and in any position) which are not physically on
the tracks but are simulated in the virtual world (see Fig. 6.6).
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Fig. 6.6. DT-in-the-Loop and Example of Mixed Reality.
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7. Conclusions

This document reported the identification of possible future innovation needs and recom-
mendations in the railway industry to enhance safety, efficiency, and intelligence in train
operations. It addressed a detailed analysis of the two proofs-of-concept (PoCs) proposed
in the previous WP2 deliverables, namely, Obstacle Detection and Virtual Coupling. The re-
port critically examined the outcomes of the PoCs, discussing recent advancements in their
respective fields, and conducting SWOT analyses to identify the main Strengths, Weak-
nesses, Opportunities, and Threats. Some recommendations emerged that aimed to ad-
dress the identified challenges in order to enhance the technical and operational feasibility
of the proposed AI approaches.
Specifically, as to Obstacle Detection, recommendations are mainly oriented at highlighting
the benefits that 3D editors could introduce when it comes to data collection for the fast reali-
sation of PoCs, promoting the exploitation of domain- and task-specific characteristics which
are peculiar to the rail sector, and underlining the potential of unsupervised anomaly detec-
tion approaches (integrated within a modular architecture) to detect any possible obstacle
on rail tracks. Regarding Virtual Coupling, the recommendations are strictly related to the
potential of Reinforcement Learning methods to develop control strategies that could guar-
antee the Virtual Coupling objectives in a safe manner. The main criticalities concern the
lack of explainability due to the inherent probabilistic nature of the proposed approach, the
need for advanced simulators for virtual testing and validation, and the possible extension
of the current European railway standards and regulations to account for the certification of
safety-critical AI-based applications.
Eventually, general recommendations and innovation needs for future developments on rail
safety and automation have been drawn. These include dealing with data challenges related
to the lack of data availability, promoting public challenges based on safety cases, introduc-
ing new concepts in risk assessment, such as safety envelopes and Grades of Intelligence
(GoI), and exploiting the potential of Digital Twins and Mixed Reality to test and validate
railway systems and AI functionalities. These recommendations will be exploited in WP5 to
identify migration strategies and roadmaps for AI integration in the rail sector.
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