
Deliverable D 2.3
WP2 Report on experimentation, analysis, and

discussion of results

Project acronym: RAILS
Starting date: 01/12/2019
Duration (in months): 43
Call (part) identifier: H2020-S2R-OC-IPX-01-2019
Grant agreement no: 881782
Due date of deliverable: Month 37
Actual submission date: February 28st 2023
Responsible/Author: Stefania Santini (CINI)
Dissemination level: Public
Status: Issued

Reviewed: yes

GA 881782 Page 1 | 74

Ref. Ares(2023)3647680 - 25/05/2023

Document history
Revision Date Description

1 30th January First issue for internal and AB review
2 28th February Second issue for EU review
3 25th May Third issue after EU review

Report contributors

Name Beneficiary Short
Name

Details of contribution

Stefania Santini CINI WP2 Leader and Contributor
Lorenzo De Donato CINI Contributor
Francesco Flammini LNU Internal Review
Rob Goverde TUDELFT Internal Review

Advisory Board Reviewers
Name Company or Institution

Danijela Ristic-Durrant University of Bremen, Germany, and S2R SMART2 project
Milan Banić University of Nis̆, Republic of Serbia, and S2R SMART2 project

Funding
This project has received funding from the Shift2Rail Joint Undertaking under the European
Union’s Horizon 2020 research and innovation programme under grant agreement n.
881782 Rails. The JU receives support from the European Union’s Horizon 2020 research
and innovation program and the Shift2Rail JU members other than the Union.

Disclaimer
The information and views set out in this document are those of the author(s) and do not
necessarily reflect the official opinion of Shift2Rail Joint Undertaking. The JU does not
guarantee the accuracy of the data included in this document. Neither the JU nor any person
acting on the JU’s behalf may be held responsible for the use which may be made of the
information contained therein.

GA 881782 Page 2 | 74

Contents

Executive Summary 5

Abbreviations and acronyms 6

1. Background 8

2. Objective 9

3. Introduction 10

4. Railway Obstacle Detection and Collision Avoidance 11

4.1 Introduction 11

4.2 Model Description 13

4.2.1 Rails Detection Module (RDM) 14

4.2.2 Object Detection Module (ODM) 15

4.2.3 Anomaly Detection Module (ADM) 15

4.2.4 Obstacle Detection and Distance Estimation Modules 16

4.3 Dataset Generation 17

4.3.1 Data Preparation 18

4.3.2 Data Labelling for the Rails Detection Module 19

4.3.2.1 Customisation of RailSem19 19

4.3.2.2 Extracting Frames from the Simulated Scenario 20

4.3.2.3 Pre-training U-Net on the Customised RailSem19 20

4.3.2.4 Self-Training for Semi-Automatic Labelling 22

4.4 Training and Validation 25

4.4.1 Rails Detection Module 25

4.4.1.1 Data Preparation 25

4.4.1.2 Training, Validating, and Testing U-Net 27

4.4.1.3 U-Net Post-Processing 28

4.4.2 Anomaly Detection Module 32

4.4.2.1 Data Preparation 33

4.4.2.2 Proposed Anomaly Detection Framework 33

GA 881782 Page 3 | 74

4.4.2.3 Training, Validating, and Testing SSIM-VQ-VAE 35

4.5 Evaluation of Results 40

4.6 Discussion of Results 44

4.6.1 Evaluation of KPIs and Limits of the Approach 44

4.6.2 Main Findings and Future Improvements 45

5. Cooperative Driving for Virtual Coupling of Autonomous Trains 49

5.1 Introduction 49

5.2 Model Description 50

5.2.1 Consists Dynamics 51

5.2.2 Safety Relative Braking Distance 52

5.2.3 Problem Statement 53

5.2.4 DDPG Virtual Coupling Controller 53

5.2.4.1 Neural Network Structures 55

5.2.4.2 Exploration Strategy 57

5.3 Dataset Generation 58

5.4 Training and Validation 60

5.4.1 DDPG Agent Training 60

5.4.2 Validation of the VCTS Controller 61

5.5 Evaluation of Results 63

5.5.1 Operational Scenario 1: VCTS Forming 63

5.5.2 Operational Scenario 2: VCTS Splitting 64

5.5.3 Operational Scenario 3: Leader Tracking 65

5.6 Discussion of Results 66

6. Conclusions 70

GA 881782 Page 4 | 74

Executive Summary

This deliverable proposes innovative AI approaches to address the problems and challenges
that emerged from the methodological proofs-of-concept (PoCs) reported in Deliverable
D2.2, in order to investigate the adoption of learning techniques and other AI methods for
enhanced rail safety and automation. On the basis of the objectives, research questions,
and AI techniques identified in the previous deliverable for two pilot case studies, experi-
mental proofs-of-concept are provided to explore the technical feasibility of specific railway
functionalities through the use of AI approaches transferred from other transportation sec-
tors.
To this aim, the document addresses the following themes for each case study: i) a tech-
nical description of the proposed innovative methods, highlighting the problem statement to
solve and the learning techniques which are going to be leveraged; ii) the definition of the
training phase for the learning approaches, which could be conducted exploiting selected
datasets, as well as through the use of ad-hoc simulation platforms; iii) the description of
the validation procedure to show the effectiveness of the proposed strategies in concrete op-
erational scenarios; iv) a preliminary discussion of the results to highlight possible benefits
and drawbacks of the innovative approaches; this phase can possibly include a comparison
analysis with traditional models to be evaluated through some of the key performance indi-
cators identified in the previous deliverable.
A description of the background for each case study is addressed in Section 1; the main ob-
jectives of the deliverable are detailed in Section 2, while the content of the two experimental
proofs-of-concept is reported in Section 3.

Public Benchmark from WP2. Most of the data produced to develop the “Railway Obsta-
cle Detection and Collision Avoidance” PoC (discussed in Chapter 4) are publicly available
on Zenodo1. These data are a product of the research activity conducted in RAILS and cre-
ated for scientific purposes only to study the potentials of Deep Learning (DL) approaches
when used to analyse Video Data in order to detect possible obstacles on rail tracks and thus
avoid collisions. The RAILS Consortium and the authors do not assume any responsibility
for the use that other researchers or users will make of these data.

1https://zenodo.org/record/7924875

GA 881782 Page 5 | 74

https://zenodo.org/record/7924875

Abbreviations and acronyms

Abbreviations / Acronyms Description
A-NAD Augmented Non-Anomaly Dataset
ADM Anomaly Detection Module
AE Autoencoder
ATD Autonomous Train Driving
AF Actication Function
ATO Automatic Train Operation
CNN Convolutional Neural Network
DDPG Deep Deterministic Policy Gradient
DL Deep Learning
DNN Deep Neural Network
DPG Deep Policy Gradient
DQN Deep Quality Network
DRL Deep Reinforcement Learning
EC Energy Consumption
FPS Frames Per Second
FTV Free Track Video
GPU Graphics Processing Unit
HST High Speed Train
ILS Initial Labelled Set
IoU Intersection over Union
KPI Key Performance Indicator
LPF Leader-Predecessor-Follower
ML Machine Leraning
MPC Model Predictive Control
NAD Non-Anomaly Dataset
NN Neural Network
ODM Object Detection Module
PxACC Pixel Accuracy
R-CNN Region-Based CNN
RBC Radio Block Center
RBD Relative braking Distance
RDM Rails Detection Module
SS Semantic Segmentation
SSIM Structural Similarity Index Measure
T2I Train to Infrastructure
T2T Train to Train
TI Tracking Index
VBODS Vision-Based Obstacle Detection System
VC Virtual Coupling
VCTS Virtually Coupled Train Set
VQ-VAE Vector Quantised-Variational AE

GA 881782 Page 6 | 74

WCV With Car Video

GA 881782 Page 7 | 74

1. Background

The present document constitutes Deliverable D2.3 “WP2 Report on experimentation,
analysis, and discussion of results” of the Shift2Rail JU project “Roadmaps for AI integration
in the Rail Sector” (RAILS). The project is in the framework of Shift2Rail’s Innovation
Programme IPX. As such, RAILS does not focus on a specific domain, nor does it directly
contribute to specific Technical Demonstrators but contributes to Disruptive Innovation and
Exploratory Research in the field of Artificial Intelligence within the Shift2Rail Innovation
Programme. The successor of the Shift2Rail Joint Undertaking is currently the Europe’s
Rail Joint Undertaking (EU-Rail) established by Council Regulation (EU) 2021/2085 of 19
November 2021.
The RAILS Workpackage WP2 investigates the adoption of learning techniques and other
AI methods for enhanced rail safety and automation. The present deliverable is consequent
to the results reported in Deliverable D2.2, in which methodological proofs-of-concept have
been provided for two selected case studies: “Obstacle Detection for Collision Avoidance”,
and “Cooperative Driving for Virtual Coupling of Autonomous Trains”. The first one aims
to effectively locate, identify, and detect any kind of obstacles on the railway track, by
leveraging lightweight equipment, such as a single camera mounted in front of the train.
As to the second case study, the main goal is to virtually couple two or more trains in
a single convoy through a Train-to-Train communication network to reduce the headway
between them, thus enhancing lane capacity. Some research questions have arisen, which
try to investigate if some of the AI approaches already assessed in other transportation
sectors could be actually transferred to the railway field for the specific domains. After an
examination of different AI methods, some learning approaches have been assumed to
be leveraged, namely, computer vision and unsupervised learning for the first case study,
and reinforcement learning for the second one, and a description of the corresponding
methodologies have been provided. Furthermore, specific key performance indicators
have been identified to evaluate the effectiveness of the proposed approaches, some of
them being transferred from the automotive field. Finally, the expected results and possible
criticalities of the proposed methodologies have arisen from this preliminary analysis.
The following step is therefore to support the theoretical proofs-of-concept proposed in
Deliverable D2.2 with experimental results. This could answer to the research questions
and the expected results that emerged in the previous deliverable, and could represent a
further step towards the definition of a benchmark for future research inspiration.

GA 881782 Page 8 | 74

2. Objective

This document, in line with the previous deliverables, deals with the following objectives of
the RAILS project:

• Objective 4: Development of methodological and experimental proofs-of-concept ;
• Objective 5: Development of Benchmarks, Models and Simulations.

In particular, in the previous deliverables, two pilot case studies have been selected, namely,
“Obstacle Detection for Collision Avoidance”, and “Cooperative Driving for Virtual Coupling
of Autonomous Trains”; for each of them, methodological proofs-of-concept have been ad-
dressed to study the feasibility of AI methods in the railway field, and some learning ap-
proaches have been identified as a potential solution to develop their respective railway
functionalities.
On the basis of the considerations made in Deliverable D2.2, the main goal of this deliver-
able is to investigate innovative AI models for the considered case studies to be evaluated via
test and validation activities, in order to understand how and if the AI approaches identified
during the previous tasks can support and enhance rail safety and automation.
Indeed, the ultimate goal of the proofs-of-concept is not to propose full solutions to a specific
problem but to derive lessons learned and recommendations for future research that will be
collected in the next Deliverable D2.4. To this aim, the present document focuses on the
following objectives:

• the definition of detailed AI models based on the selected learning approaches;
• the description of the learning process of the proposed methods through a training

phase, which can be carried out exploiting specific datasets, as well as through a
simulation platform developed ad-hoc for the purpose;

• the validation of the proposed models to show their effectiveness in simulated opera-
tional scenarios;

• a preliminary analysis of the results, to highlight the possible benefits and drawbacks
of the proposed techniques.

Hence, this study is meant to be a step towards the acquisition of the necessary knowl-
edge to understand the potentiality of AI in railways, and to drive the rail sector towards a
vision of safe automation and intelligent train control. In this direction, the main object of the
next deliverable will be an in-depth analysis to identify gaps and opportunities, weaknesses
and strengths that emerged from each case study, with the final aim of defining technology
roadmaps towards the effective adoption of AI in the rail sector.

GA 881782 Page 9 | 74

3. Introduction

Deliverable D2.3 reports the validation activities of the solutions and approaches described
and deeply analysed in Deliverable D2.2. It focuses on the analyses and simulations con-
ducted applying the selected AI techniques to the pilot case studies identified in Deliverable
D2.1 in concrete operational scenarios. Hence, this deliverable provides meaningful insights
and information on the validity of the research results and the feasibility of the approaches
in real settings. The heart of this document consists of two main chapters, addressing the
aforementioned issues for the two selected pilot case studies: Chapter 4 is devoted to “Ob-
stacle Detection for Collision Avoidance” and Chapter 5 deals with “Cooperative Driving for
Virtual Coupling of Autonomous Trains”.
The two chapters share the same structure: a brief introduction constitutes Sections 4.1 and
5.1; a detailed description of the proposed AI models is provided in Sections 4.2 and 5.2; the
selection of specific datasets as well as the development of an ad-hoc simulation platform
for training and validation purposes is described in Sections 4.3 and 5.3; the training phase
together with the validation of the proposed approach in concrete operational scenarios are
deeply analysed in Sections 4.4 and 5.4; the results of the validation phase are shown in
Sections 4.5 and 5.5; finally, a preliminary discussion of the potential advantages of the pro-
posed approaches is addressed in Sections 4.6 and 5.6.
A critical examination of the work and of the results obtained in this Deliverable, also against
the current state-of-the-art in railways, will be the object of the next Deliverable D2.4 (“Re-
port on identification of future innovation needs and recommendations for improvements”).
Specifically, the latter will report lessons learned, weaknesses and strengths shown by each
exploited technology, technical and implementation recommendations, unaddressed issues,
and innovation needs, with the aim of identifying technology roadmaps for AI integration in
the rail sector.

GA 881782 Page 10 | 74

4. Railway Obstacle Detection and Collision Avoidance

4.1. Introduction

In the context of Autonomous Train Driving (ATD), environmental awareness is one of the
fundamental requirements to safely take autonomous driving decisions, especially in open
railway environments (i.e., railways that are not completely isolated from external factors) [1].
In order to move towards full autonomy, trains should be equipped with adequate sensors
and systems that allow them to achieve full situation awareness in relation to the health
status of the internal components of the vehicle and external threats or signals. We propose
a generic framework for AI ATD systems in Fig. 4.1.

Fig. 4.1. A Generic Framework for AI ATD Systems.

In the following of this chapter, we mainly focus on Environmental Awareness, and specif-
ically on Vision-Based Obstacle Detection (sub-)System (VBODS) enabled by AI ap-
proaches.
To detect obstacles in safety-critical scenarios, obstacle detection systems typically leverage
data coming from multiple sensors including, among others, LiDARs, radars, and cameras
(as shown in Fig.4.1). Furthermore, obstacle recognition may also involve different sys-
tems deployed at different “levels” (e.g., on-board, trackside, and airborne sub-systems as
discussed within the SMART [2] and SMART2 [3] projects). Nevertheless, such complex
systems, despite being (potentially) extremely effective, introduce several costs given the
massive sensorization required for their implementation.
In these contexts, cameras are mainly used to classify the type of the obstacles1 while
their identification within the environment (i.e., their localisation) is demanded to the other
sensors. Indeed, in the literature, different solutions have already been proposed for vision-
based obstacle detection on rail tracks, involving both AI and non-AI approaches [4]; how-
ever, to the best of our knowledge, the developed AI systems mainly rely on Supervised
approaches. Briefly, these kinds of AI models (to be specific, Deep Learning - DL - models)
are trained to detect a set of elements (obstacles, in our case) that are specified in advance.
For example, a Deep Neural Network (DNN) can be trained to detect some pre-specified

1Cameras have also been used for object distance estimation in SMART [2] and SMART2 [3]

GA 881782 Page 11 | 74

obstacles such as cars, pedestrians, some species of animals, and the like. The main prob-
lem with these approaches is that if an obstacle that has not been taken into account when
training the DNN has to be detected, the DNN will most likely fail.
The research activities conducted to develop the proof-of-concept described in this chap-
ter, aimed at understanding to what extent it would be possible to overcome this coverage
issue and leverage one of the cheapest sensors, i.e., a RGB camera, in order to discuss
opportunities and shortcomings. Hence, we investigated:

• Unsupervised DL approaches that would potentially allow VBODs to detect any obsta-
cle (and not just those specified a priori);

• Strengths and limits of implementing a cheaper (or supportive) alternative, compared
to the systems introduced above, which exploits AI, artificial vision, and data coming
from a single camera mounted in front of the train.

For the sake of readability, in the following, we refer to these terms:

• Obstacles that are known a-priori will be referred to as objects, while the action of
detecting objects will be referred to as Object Detection. Theoretically, it would be
possible to pre-specify any kind of obstacle, build a labelled dataset containing all
these objects, train a DNN in supervised mode, and build an obstacle detection system
based on such DNN. However, this is too far from being physically feasible given the
extremely large amount of data and time needed to build a general-purpose object
detector. Hence, the assumption in this study is that it would be feasible to pre-specify
just a subset of objects

• Given the assumption above, we will refer to obstacles that are not known, i.e., that
are difficult to properly specify and identify a-priori, as anomalies; consequently, the
action of detecting anomalies will be referred to as Anomaly Detection.

• Finally, with the term obstacle, we will refer to both objects and anomalies.

To formalise the objectives to achieve and understand the potential effectiveness and the
theoretical applicability of the approach, in Deliverable D2.2 [5] some Research Questions
(RQs) and Key Performance Indicators (KPIs) were defined. They are reported in Table 4.1
and Table 4.2, respectively.

Table 4.1: Research Questions.

RQ Description

RQ1
How can we detect known or unknown obstacles, such as rocks, vehicles, trees and people,
in front of the train by using train front cameras and artificial vision?

RQ2 Can obstacle detection solutions based on artificial vision be transferred and adapted from
other sectors (e.g., automotive, avionics, robotics, etc.) to railways?

RQ3
Can we demonstrate possible answers to RQ1 and RQ2 through a simple proof-of-concept
demonstrator in order to inspire future developments and a technology roadmap?

To conclude, the case study under analysis is an extremely interesting test-bench given its
relevance in the railway domain, however, we firmly think that lessons learnt and approaches
developed by facing this case study would be valuable also in other contexts (e.g., obstacle
detection at level crossings).

GA 881782 Page 12 | 74

Table 4.2: KPIs for the evaluation of AI-based obstacle detection systems.

KPI Description

KPI1
Detection Distance. Indicates the ability of the system to detect distant obstacles in order
to mitigate as much as possible the effects of any impact. Measured in meters.

KPI2
Obstacle Coverage. Indicates the coverage of the system in terms of the types of obstacle
it can detect. Measured in number of objects’ classes (limited in case of supervised
approaches).

KPI3
Computation Time. Indicates the time required by the system to detect possible obstacles
on the tracks. Measured in milliseconds.

4.2. Model Description

As from the comprehensive analysis performed in [4], VBODSs typically involve two phases:
first, they detect rail tracks, then, they detect and classify obstacles on or near rail tracks.
The main problem is that, as introduced in Section 4.1, most DL systems are trained in a
supervised manner. Architecture families such as YOLO or region-based CNNs (R-CNNs)
- commonly known as object detectors - have shown incredible performance when it comes
to detecting objects; additionally, they have already been widely investigated for mainte-
nance/inspection applications in the rail sector [6, 7]. However, in the training phase, they
should be fed with labelled data (objects bounding boxes and labels). This means that if an
obstacle, that has not been elaborated in the training phase, appears on the track, it will most
likely not be detected. This is an extremely sensitive issue; it would be nearly impossible
to take into account (a-priori) every object that could possibly occupy the rail tracks. Com-
mon objects could be vehicles, pedestrians, animals, etc; however, also these “classes” are
composed of different sub-classes (e.g., cars, motorbikes, and trucks for the vehicle class).
Therefore, building a comprehensive dataset that incorporates all the possible classes and
sub-classes is extremely time-consuming and, most likely, physically unfeasible as hundreds
of kinds of objects should be considered.
To partially overcome this issue, it would be possible to leverage systems oriented at de-
tecting anomalies based on unsupervised DL approaches. Visionary, an anomaly detection
system will learn characteristics related to “free” tracks and, in case an uncommon scenario
is presented in input, it will produce an anomaly map indicating where the anomaly is located
(however, it will not specify the class of the anomaly). Worth mentioning, an anomaly detec-
tion system could improve the robustness and the coverage of the whole obstacle detection
system as it could:

• to support the decision taken by an object detector by confirming its output (i.e., it will
highlight an anomaly in the same position as an object detected by the object detector);

• to act as a complementary system as it would be capable of detecting unknown
anomalies that the object detector would not be able to detect.

Taking into account this analysis, the idea is to extend the typical VBODS architecture as
shown in Fig. 4.2. First, the Rails Detection Module (RDM) extracts the rails from the input
frames; then, in parallel, the Object Detection Module (ODM) and the Anomaly Detection
Modules (ADM) respectively detect objects and anomalies within the frame in output to the

GA 881782 Page 13 | 74

RDM; hence, the Obstacle Detection Module merges the results from the ODM and the
ADM to obtain one prediction for each obstacle; lastly, the Distance Estimation Module
computes the distance(s) of the obstacle(s) from the train. These models are described
below.

Fig. 4.2. An Architecture for Vision-Based Obstacle Detection.

4.2.1. Rails Detection Module (RDM)

As mentioned, this module is oriented at extracting rail tracks from video frames. Different
solutions have already been proposed in the literature to address this specific task; some
of them rely on traditional Computer Vision approaches (i.e., not based on AI, such as geo-
metric approaches), however, their performance appears to be extremely dependent on light
and weather variations, hence, they do not seem to be as efficient as DL solutions [4].
Among the works based on DL (and RGB cameras), reference [8] implements a ResNet50
DNN combined with fully convolutional layers to segment the rail tracks, while reference [9]
proposes a solution based on SegNet [10]. Despite the fact that, in both cases, tests were
performed on images collected from real scenarios, in our understanding, these studies
seem not to take into account some task-specific characteristics (discussed in Section 4.3)
when building the dataset. However, the results they achieve indicate that DL Semantic
Segmentation (SS) approaches are suitable for rails detection.
Based on these results, we adopted a SS approach to implement the RDM by leveraging
U-Net (originally conceived for medical image analysis [11]) instead of the aforementioned
DNNs given the following reasons:

1. The solution proposed in [8], despite being quite effective, introduces some complex-
ities in terms of implementability and network structure. Hence, inspired by [9], we
decided to adopt a simpler DNN for SS and then, in case, apply some post-processing
to understand whether a simple approach could still reach good results.

2. SegNet and U-Net share a similar basic encoder-decoder architecture. They involve
some convolutional layers (encoder) to extract relevant features from the input image
and some deconvolutional layers (decoder) to generate the output (e.g., a mask/label)
based on the features extracted by the encoder. To improve results, both SegNet and
U-Net introduce some connections between convolutional and deconvolutional layers;
the concept is to pass to deconvolutional layers some additional information in order to
allow them to produce more suitable segmentation masks. Without going deeper into
the details, the main difference between SegNet and U-Net lies in the “typology” of the

GA 881782 Page 14 | 74

passed information. In U-Net, deconvolutional layers receive the entire feature maps
produced by the corresponding convolutional layers; in SegNet, deconvolutional layers
receive an encoded version of the feature maps2. Given that, SegNet requires lower
memory storage but it pays this advantage in accuracy [10]. Hence, we decided to opt
for U-Net which, despite being more memory expensive than SegNet, has proved to
be (a bit) more accurate.

As better discussed in the following sections, we collected a dataset related to a single rail-
way line from a simulated environment we implemented by leveraging Mathworks’ RoadRun-
ner 3D Editor3. Hence, we implemented a SS approach based on U-Net (adapting a PyTorch
implementation available on GitHub4), to segment the rail tracks. Lastly, post-processing is
applied to “mask” the input frames and obtain images depicting only the rails without the
background. These frames will be then processed, in parallel, by the ODM and the ADM.

4.2.2. Object Detection Module (ODM)

The ODM will implement a DNN trained in supervised mode, hence, it will be able to detect
only the objects it has seen during the training phase.
To implement this module it would be possible to leverage, adapt, and/or improve the dis-
parate supervised solutions for object detection that have been proposed in the literature
[12, 13]; notably, some of them, e.g., detectors belonging to the Region-based CNNs (R-
CNN) and YOLO families, have already been tested for object detection on rail tracks [4,14].
Important to mention, this is not a specific railway task, objects that can be detected on rail
tracks (e.g., pedestrians, vehicles, animals, etc.) are actually common entities that can be
found in different contexts. Hence, to train (more specifically, pre-train) object detectors, it
would be possible to leverage multiple datasets available online like KITTI5, MS COCO6, and
Pascal VOC7.
Given the large attention that object detection has received during the last few years and
the available results, in this document we do not pay much attention to the ODM module but
mainly focus on the development of the anomaly detection module.

4.2.3. Anomaly Detection Module (ADM)

As just underlined, in the literature, there is plenty of studies discussing the realization of
Object Detection architectures oriented at detecting and classifying objects. However, pro-
vided that it is nearly impossible to catalog all the possible obstacles, an anomaly detection
approach that could highlight any kind of obstacles on the tracks (based on data coming from
a single camera) may be useful to increment the robustness and the coverage of VBODSs.
To that aim, the ADM will implement a DNN trained in Unsupervised mode which would
potentially be capable of detecting any kind of anomaly within video frames.
Many studies are available that address anomaly detection within images. Tailored to the rail
sector, reference [15] proposes an approach based on Autoencoders (AEs) to identify frames
containing anomalies. As far as we understood, the model produces in output an anomaly

2Refer to [10] for further details.
3https://www.mathworks.com/products/roadrunner.html
4https://github.com/aladdinpersson/Machine-Learning-Collection/tree/master/ML/P
ytorch/image_segmentation/semantic_segmentation_unet

5https://www.cvlibs.net/datasets/kitti/index.php
6https://cocodataset.org/#home
7http://host.robots.ox.ac.uk/pascal/VOC/voc2007/index.html

GA 881782 Page 15 | 74

https://www.mathworks.com/products/roadrunner.html
https://github.com/aladdinpersson/Machine-Learning-Collection/tree/master/ML/Pytorch/image_segmentation/semantic_segmentation_unet
https://github.com/aladdinpersson/Machine-Learning-Collection/tree/master/ML/Pytorch/image_segmentation/semantic_segmentation_unet
https://www.cvlibs.net/datasets/kitti/index.php
https://cocodataset.org/#home
http://host.robots.ox.ac.uk/pascal/VOC/voc2007/index.html

score indicating whether the frame contains an anomaly or not but it does not locate the
anomaly within the frame itself. In addition, the score seems to be computed by comparing
two reconstructions: one related to a rail image without obstacles and one related to the
same image but with obstacles. Hence, provided that the identification of the anomaly within
the frame can be done by comparing (at the pixel level) the two reconstructions, and de-
spite achieving very promising results in identifying anomalous frames, conceptually, in our
understanding, this approach expects that an obstacle-free image is available with which to
compare the potentially anomalous image. In our opinion, this may introduce some complex-
ities at run-time given the fact that another mechanism should be implemented to recognize
the exact obstacle-free frame with which to compare the frame collected in real-time.
On the other hand, by looking at the automotive field, the authors in [16], inspired by [17],
implemented a multi-step process to detect anomalies in road scenes. Briefly, they first seg-
ment the image in input through a SS approach based on AEs to produce a segmentation
mask; then, they apply another DNN to synthesize the image (i.e., generate a reconstructed
image) starting from the segmentation mask obtained at the previous step; lastly, they com-
pare the original image with its synthesized version to obtain an anomaly map. These ap-
proaches (both [16] and [17]) are more in-line with the idea we would like to implement,
however, the main problem is that, in our understanding, DNNs oriented at image synthesis
(e.g., based on Generative Adversarial Networks [18] or ad-hoc DNNs [19]) typically take
in input “complex” segmentation masks identifying multiple objects like trees, cars, signs,
pedestrians, road, sky, and so on; hence, they learn how to reconstruct these parts of the
images. In our case, after the RDM (oriented at producing a mask identifying the rail track
as deeply discussed in Sections 4.3 and 4.4.1), images only contain a rail track and a black
background.
Therefore, we tried to find simpler and more straightforward solutions that could allow us
to produce a reconstructed image starting from the original image itself rather than its seg-
mentation mask. Among them, with the aim of detecting anomalies within generic (mostly
manufacturing-oriented) images, reference [20] discusses an AE combined with an SSIM-
based loss function (SSIM-AE) which helped to improve detection performances, while refer-
ence [21] developed an architecture based on a Vector Quantised-Variational AE (VQ-VAE).
If analyzed from a high-level perspective, both these studies applied the following reasoning:
the DNN is trained on defect-free images only; then when at inference time a defective image
is presented in input, the model reconstructs the image and the anomaly map is computed
by comparing the reconstructed image with the original one. As better discussed in Section
4.4.2, inspired by both these works, we implemented the ADM by adopting a VQ-VAE with
a loss function based on the SSIM; we were able to get some promising results (especially
when it comes to images reconstruction), however, there is still room for improvements in
the context of anomaly detection.

4.2.4. Obstacle Detection and Distance Estimation Modules

The Obstacle Detection module will simply merge the detection performed by the ODM and
the ADM. The ADM should be able to detect also the obstacles detected by the ODM, there-
fore, assuming it is completely reliable, the results from the ADM could be used by this
module to check the detection performed by the ODM. Then, for the obstacles which have
been detected by both the ODM and ADM, the Obstacle Detection module will take into
account the detection produced by the ODM (as it also identifies the class of the obstacle);
otherwise, it will consider the detection produced by the ADM. Ideally, this module will pro-

GA 881782 Page 16 | 74

duce in output a map that i) identifies the anomalous regions and ii) identifies and classifies
the objects. Most likely, this module would not involve any AI functionality.
To conclude, the Distance Estimation Module is in charge of estimating the distance of the
obstacle from the train. This specific task has been recently analyzed within the SMART
project (DisNet [22]), however, despite being innovative, it seems to be class-dependent,
i.e., to estimate the distance it takes into account the dimensions of a specific object in
different circumstances. This means that it would be possible to estimate the distance of
objects in output to the ODM. Differently, for what concerns anomalies, a suitable approach
could be stereo triangulation [23], in case multiple cameras are involved.

4.3. Dataset Generation

One of the most relevant issues that we faced when addressing this case study is re-
lated to data availability. Indeed, to the best of our knowledge, besides some datasets like
RailSem198, no suitable dataset is available online; where by suitable we mean datasets
“taking into account some domain-specific and task-specific characteristics” and/or “depict-
ing obstacles on rail tracks”. In our view, domain-specific and task-specific characteristics
are of extreme importance when developing AI applications in complex and safety-related
contexts.
Typically, when it comes to developing ML approaches, it is good practice to evaluate their
generalisation performance, which means estimating how the model would perform when
dealing with situations it has not seen before. Usually, this is done by training the ML model
with a training set and a validation set, and then testing the generalisation performance on
data (the test set) it has not seen during the training phase. The motivations are related
to the fact that it is not always possible to include in the training set all the possible sce-
narios the ML model would analyse once deployed due to the extreme aleatory of some
environments. However, in railway and for this specific case study, it would be possible to
reduce such an aleatory by building different datasets for each railway line (or even railway
line sections). To better understand this concept, let’s consider two railway lines: Line A
does not include any structural “complexity” (it is composed of a single rail track), while Line
B includes two lanes (i.e., two rail tracks) and a turnout. Assuming we want to build a DL
model to detect rail tracks, is it convenient from a safety perspective to generate a unique
dataset that encompasses frames related to both railway lines and build9 a unique DL model
capable of working on both these lines? Probably, it does not exist a 100% correct answer to
this question, however, we think that generating different datasets (one for each railway line)
could help to reduce the structural aleatory the DL model should face. The same reasoning
could be applied at the AI system level; as depicted in Fig. 4.3, the reference architecture
(and possibly also the specific DNNs used to implement it) would always be the same, but
the systems (i.e., the combination of architecture and dataset) would be built ad-hoc for each
railway line. Then, at the very end, the aleatory is “limited” to weather and light conditions
and possible intrusions.
Notably, this aspect also leads to another advantage. If we focus on a specific railway line
and collect multiple videos related to that line under different light and weather conditions, it
would be highly probable that, at run-time, the AI system would analyse a scenario that is

8https://wilddash.cc/railsem19
9“Build” here means train the DL model on a specific dataset.

GA 881782 Page 17 | 74

https://wilddash.cc/railsem19

Fig. 4.3. Building Different DL Models for Different Railway Lines

very similar (but, of course, not identical) to something it has already seen during the train-
ing phase. Worth highlighting, the concept expressed above is a peculiarity of the railway
domain as the path the train will travel is pre-determined and constrained by the rail tracks.
In automotive, for example, this concept can hardly be applied as a generic vehicle is “free”
to travel any kind of road and it would be nearly impossible to build different DL models for
all the possible paths a vehicle can travel.
Basing on this idea, we leveraged the MathWorks’ 3D editor RoadRunner10, conceived for
the creation of road scenes, to build a railway scenario depicting a specific railway line from
which to capture videos to train and test AI algorithms. Fig. 4.4 shows the scenario we built
and some of the frames we extracted by simulating a single camera mounted in front of a
train.

Fig. 4.4. Railway Scenario build in RoadRunner and related Frames

4.3.1. Data Preparation

The modules we implemented, i.e., the RDM and the ADM, are sequential in our architecture
(see Fig. 4.2). Therefore, to train the DNN composing the ADM, we had to first process the
frames extracted from the simulated scenario through the RDM.
In the following of this section, we will describe how the frames extracted from the videos col-
lected through the simulated scenario were labelled to train the U-Net composing the RDM;
10https://www.mathworks.com/products/roadrunner.html

GA 881782 Page 18 | 74

https://www.mathworks.com/products/roadrunner.html

then, the particular realisation of the datasets, i.e., their specific decomposition in training,
validation, and test sets (together with the application of data augmentation algorithms), will
be discussed in detail for each module in Sections 4.4.1.1 (for the RDM) and 4.4.2.1 (for the
ADM).

4.3.2. Data Labelling for the Rails Detection Module

Once frames have been extracted from the simulated scenario, we needed to label them.
The main issue is that manual labelling is extremely time-consuming, therefore, we imple-
mented a semi-automatic labelling approach based on Transfer Learning to label the
majority of the frames as depicted in Fig. 4.5 and better discussed in the following.

Fig. 4.5. Semi-automatic Labelling Process

4.3.2.1. Customisation of RailSem19

First, we leveraged the RailSem19 dataset to pre-train the U-Net introduced in Section 4.2.1.
RailSem19 is composed of about 8500 images properly labelled for semantic segmentation.
However, these images are associated with multiple labels (e.g., road, pole, traffic, tram
track, and so on) and, in this case, we are only interested in the “rail track” label. Hence, we
customised the RailSem19 by adapting some Python scripts available on GitHub11 to filter
out all the superfluous labels and all the images that did not contain any rail tracks. Then, we
processed the obtained files through LabelMe12 and other scripts13 to obtain masks that can
be used to train the U-Net. Worth emphasising, when dealing with semantic segmentation, a
“mask” is the label associated with a specific input image; the “mask” itself is an image
where, assuming a simple case with only one object to segment, a pixel assumes the value
1 if it is related to the object, or 0 if it is related to the background (i.e., all the objects that are

11https://github.com/xmba15/rail_marking/tree/master/scripts
12https://github.com/wkentaro/labelme
13https://github.com/wkentaro/labelme/tree/main/examples/bbox_detection#conver

t-to-voc-format-dataset

GA 881782 Page 19 | 74

https://github.com/xmba15/rail_marking/tree/master/scripts
https://github.com/wkentaro/labelme
https://github.com/wkentaro/labelme/tree/main/examples/bbox_detection#convert-to-voc-format-dataset
https://github.com/wkentaro/labelme/tree/main/examples/bbox_detection#convert-to-voc-format-dataset

not of interest). In our case, masks’ pixels are equal to 1 if they are related to the rail tracks,
otherwise, their value is 0.
Eventually, we obtained a Customised RailSem19 (CRS19) dataset composed of 5519 im-
ages (and related masks) which we split into Training (3863 images; ∼ 70%), Validation (828
images, ∼ 15%), and Test (828 images; ∼ 15%) sets.

4.3.2.2. Extracting Frames from the Simulated Scenario

At the same time, we collected a “Free Track” Video (FTV) from the simulated scenario
composed of 4143 frames (enumerated from 0 to 4142). For this proof-of-concept, we used
only the first 2000 even frames (i.e., those with an even id from 0 to 3998). Of these 2000
frames, we manually labelled only 10% (200 frames) through LabelMe by taking into account
a step of 10; i.e., we labelled the 10-th, the 20-th, the 30-th, and so on. These compose the
“Initial Labelled Set” (ILS) of frames. Lastly, we split the ILS into Training and Validation sets
with a 90-10% ratio (180 frames as training samples and 20 frames as validation samples).
Also in this case, we used a specific sampling step instead of a random sampling; so, of the
200 labelled frames, the 10-th, the 20-th, and so on, belong to the Validation set, while the
others to the Training set.
This schematic subdivision is necessary to give the DNN the possibility to learn the char-
acteristics of the whole railway line and also to test the segmentation performances of the
network along the entire railway line.

4.3.2.3. Pre-training U-Net on the Customised RailSem19

The CRS19 dataset has been used to pre-train the U-Net. The specific implementation
values will be recalled afterwards in this document (Section 4.4.1), however, it is important
to emphasise that for this pre-training phase we adopted the Adam optimizer with a learning
rate equal to 10−4, the Binary Cross-Entropy With Logits Loss (BCEWithLogitLoss14) as the
loss function, batch size equals to 8; in addition, we set the maximum number of epochs
to 100 but we also implemented an EarlyStopping criterion to stop the training if the loss
evaluated on the Validation set did not improve for 10 consecutive epochs (this number of
epochs - the 10 in this case - is named “patience”). Hence, the training stopped at the
48th epoch and the lowest loss on the Validation set was reached at the 38th epoch (best
epoch). Note that images were scaled from 1920x1080 to 480x270 to be processed by
U-Net because of GPU RAM and time constraints.
Fig. 4.6 shows the performance of the U-Net during the training phase in terms of loss
(BCEWithLogitLoss) and three metrics namely Pixel Accuracy (PxAcc), Intersection over
Union (IoU), and Dice Score. These metrics simply compare the target mask (the label) with
the predicted mask (the output of U-Net); notably, the last two metrics have been computed
by taking into account only the pixels related to the rail tracks. Table 4.3 shows the values
indicated above related to the best epoch (38th) evaluated also on the Test set.
For the sake of knowledge, the PxAcc is not fully representative of the problem given the
fact that it takes into account all the predicted pixels (the majority of which are background
pixels), hence, its value is biased from the “background class”, while we are interested in
how the DNN is capable of predicting the “rail track class”. Also, the Dice Score is computed
as two times the IoU divided by the total number of pixels contained in the two images that
are being compared, hence, also the IoU is quite superfluous as it is already considered

14https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html

GA 881782 Page 20 | 74

https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html

Fig. 4.6. Pre-training Losses and Metrics.

Table 4.3: Performance of U-Net at the best epoch

Set Loss PxAcc IoU Dice

Training 0.664641 0.9917 0.8992 0.9455
Validation 0.666619 0.9893 0.8703 0.9257

Test 0.666413 0.9885 0.8612 0.9183

in the Dice Score. Hence, in the following of this chapter, we will take into account only
the Dice Score to evaluate the “accuracy” of U-Net. Important to mention, we modified the
computation of the Dice Score by taking into account only the white pixels (i.e., those that
are related to the rail tracks in the label and should be related to the rail track in the predicted
mask):

Dice Score =
2×Number of overlapping white pixels

White pixels in the target mask +White pixels in the predicted mask

where the “Number of overlapping white pixels” is simply the IoU computed by taking into
account only the pixels related to the rail tracks (i.e., the white pixels).

GA 881782 Page 21 | 74

4.3.2.4. Self-Training for Semi-Automatic Labelling

The main goal is to automatically label the 1800 frames extracted from the FT video dis-
cussed in Section 4.3.2.2 by leveraging the 200 manually labelled frames composing the
ILS and the weights related to the best epoch (38th) obtained during the pre-training phase
(to which we will simply refer as “pre-trained weights”). To that aim, we implemented a
Self-Training approach based on Transfer Learning.
In the literature, there are different Self-Training methods [24–27]. In general, the base
concept is to build a “teacher” which takes in input some labelled “real” data and produces
some pseudo-labels for the unlabelled data; then, a “student” model is trained by combining
data with hand-crafted labels and pseudo-labels.
Typically, by taking into account trivial tasks as the classification one, the trainer produces a
pseudo-label with a specific confidence (e.g., the image contains a cat with a confidence of
99%). If such confidence is greater than a given threshold established a-priori, the label is
assumed to be “potentially correct” and can be used to train the student. The main problem,
in this case, is that we do not have a label for each image, instead, we have a label for each
pixel (0 = background, 1 = rail tracks). Hence, to find a suitable solution for Self-Training, we
formalised three main questions:

• How can we understand which is the best epoch to stop the training of the teacher to
produce pseudo-labels?

• How can we understand if the teacher has correctly classified a specific pixel?
• How can we understand if the mask (pseudo-label) produced by the teacher is reli-

able/correct?

The first question is quite trivial; we adopted the same EarlyStopping criterion used during
the pre-training (Section 4.3.2.3) but we set a patience of 20.
As for the two remaining questions, we adopted the following approach. For each pixel, the
network produces a “confidence” score between 0 and 1. The closer the score is to 0, the
more confident the network is that it is a background pixel; conversely, the closer the score
is to 1, the more confident the network is that it is a pixel related to the rails class. Therefore,
we set two thresholds: bg threshold = 0.05 and rails threshold = 0.95. In particular: if
the prediction related to the i-th pixel is less than bg threshold (0.05), we are quite confi-
dent that the pixel belongs to the background; in the same way, if the prediction is greater
than rails threshold (0.95), we are quite confident that it belongs to the rail track. Then, to
make the automatic labelling more robust, we needed a way to evaluate the correctness of
the pseudo-label by considering the “uncertain” pixels (i.e., those for which bg threshold <
prediction < rails threshold).
The solution we adopted is to run the model on both the original image and a horizontal-
flipped image as depicted in Fig. 4.7. The prediction is made on both the original and
the flipped image; then, the prediction of the flipped image is flipped again to bring it back
to its original position; conceptually, we have two predictions for each pixel. Hence, the
positional mean between the values of the two predicted masks is computed. Thus, the
aforementioned thresholds, i.e., bg threshold and rails threshold, are applied. At this point,
we set another threshold to evaluate the reliability of the generated pseudo-label based on
the number of uncertain pixels. So, if the number of uncertain pixels is less than 0.001%
(trust threshold), the label is considered reliable and is added (together with the related
frame) to the “labelled set”.

GA 881782 Page 22 | 74

Fig. 4.7. Evaluation of Generated Pseudo-labels

The Self-Training process can go through several steps, depending on how many steps are
required to label all the unlabelled data. At each phase: i) the U-Net (pre-trained on CRS19)
is fine-tuned by using the Training and Validation sets of the “labelled set”, which is first
augmented by flipping all the images and masks; ii) once the fine-tuning is ended given
the EarlyStopping criterion, all the frames contained in the “unlabelled set” are processed
by the fine-tuned U-Net as shown in Fig. 4.7; iii) all the reliable pseudo-labels and related
frames are added to the labelled set by randomly splitting them between the training and the
validation sets keeping the 90-10% ratio. In our case, the Self-Training process terminated
after four steps as summarised in Table 4.4. The dataset used in Step 1 is the ILS defined
above; also, the “→” indicates the augmentation process. Notably, after the fourth step, there
is no need to split the new samples into Training and Validation since the Self-Training has
ended.

Table 4.4: Self-Training Steps
Fine-Tuning Automatic Labelling

Step Dataset Results on Validation Set New Labelled
Frames

Added to
Training

Added to
Validation

Frames
to LabelTraining Validaiton Lowest Loss Epoch Dice Score

1 180→ 360 20→ 40 0.682783 29 0.9648 248 / 1800 224 24 1552
2 404→ 808 44→ 88 0.682663 44 0.9838 1521 / 1552 1369 152 31
3 1773→ 3546 196→ 392 0.682519 53 0.9961 10 / 31 9 1 21
4 1782→ 3564 197→ 394 0.682493 95 0.9996 21 / 21 / / 0

Downstream this process we have labelled all the 2000 frames extracted from the FTV.

Is Transfer Learning needed? Before continuing with the implementation of the models, it
is important to underline the contribution of Transfer Learning. To this aim, Fig.4.8 compares
the performance of U-Net in case of fine-tuning (i.e., loading the pre-training weights) and
training from scratch (i.e., without loading them) by taking into account the augmented ILS;
performances are evaluated on the Validation set.
Considering the chart on the left hand, when training the network from scratch, the training
completes all the 100 epochs and the EarlyStopping criterion is not triggered; the lowest
loss on the Validation set is registered at the 100th epoch. This practically means that the
training should continue further until a sub-optimal solution is reached. Differently, when
fine-tuning the network starting from the pre-trained weights, the EarlyStopping is triggered

GA 881782 Page 23 | 74

Fig. 4.8. Comparison of U-Net Performance on ILS Validation Set

and the lowest loss on the Validation set is registered at the 29th epoch. As for the Dice
Score (the chart on the right hand), it is possible to note that in case of fine-tuning the Dice
Score is centred around the value 0.964, while, in the other case, the performances are
characterised by consistent oscillations.
The scales between the training from scratch and the fine-tuning are quite different, there-
fore, for the sake of completeness, we report in Fig. 4.9 the performance of U-Net in case
of fine-tuning. It is possible to note some oscillations but, this time, they are limited to very
narrow intervals.

Fig. 4.9. U-Net Performance on ILS Validation Set in Case of Fine-Tuning

To conclude, Table 4.5 compares the performance of U-Net by taking into account the best
epochs of the two training.

Table 4.5: Comparison of U-Net Performance on ILS Validation Set (best epochs)

Training Mode Lowest Loss Epoch Dice Score

From Scratch 0.6839 100 0.9644
Fine-tuning 0.6827 29 0.9648

To answer the question object of this paragraph, the evidence above shows that Transfer
Learning can contribute to makeing the network more stable (in terms of oscillations in the

GA 881782 Page 24 | 74

Dice Score trend) and achieve more or less the same sub-optimal solution but within a
reduced number of epochs reducing, de facto, the time needed to train the DNN.

4.4. Training and Validation

This section discusses the training and validation phases of the DNNs that have been chosen
to implement the modules of the VBODS in Fig. 4.2.

4.4.1. Rails Detection Module

As indicated in Section 4.2.1, the RDM aims at detecting rail tracks within video frames.
To implement this module, we adopted the same U-Net discussed in the previous section.
However, before proceeding with the technical implementation of the network, it is important
to underline how data were pre-processed.

4.4.1.1. Data Preparation

Starting from the 2000 labelled frames (which are related to free tracks, i.e., do not contain
any obstacle) obtained downstream the Self-Training process described in Section 4.3.2, we
applied some Data Augmentation by leveraging the Automold Python library15. Important
to mention, the Automold library offers different transformations from which we selected only
those summarised in Table 4.6. Notably, most of these transformations introduce some
randomness, for example: the “Rain” produces drops with random intensity and angulation;
the “Bright” increases the brightness of the pixels according to a random factor; and so on.

Table 4.6: Types of Data Augmentation Transformations

Transformation Acronym Description

Bright BR Randomly increase the brightness of the image
Dark DA Randomly decrease the brightness of the pixel
Rain RN Simulate rain by randomly adding drops with different intensities and angulation
Shadow SH Simulate shadows by adding random semitransparent masks on the image
Sun Flare SF Simulate sun flares by adding concentric and random circles in the image

The frames we extracted from the simulated scenario have a resolution of 2080x1170 pixels,
therefore, they are quite heavy in terms of memory. Given some constraints related to the
storage and GPU RAM of the machine we used to train U-Net, we had to reduce the number
of frames. Hence, we selected only 1600 frames among the 2000 (distributed to maintain
information related to the whole railway line) that we used as “Original (OR) frames” to
perform the augmentation. Then, for each frame, we applied all the transformations indicated
in Table 4.6. Fig. 4.10 shows the effects of the transformations in relation to one of the
original frames; worth underlining, the mask related to the OR frame (“Common” Mask in
the figure) has been used for all the transformed frames retrieved from it.
Then, we subdivided the Augmented Dataset into Training, Validation, and Test sets as
shown in Table 4.7.
Practically, we got 1600 frames for each transformation plus the 1600 OR frames. Notably,
the Training-Validation-Test splitting ratio (80-10-10%) was kept both at the dataset level and

15https://github.com/UjjwalSaxena/Automold--Road-Augmentation-Library

GA 881782 Page 25 | 74

https://github.com/UjjwalSaxena/Automold--Road-Augmentation-Library

Fig. 4.10. Examples of Transformations

Table 4.7: Augmented Dataset Subdivision into Training, Validation, and Test Sets
Transformation

Set OR BR DA RN SH SF Total
Training 1280 1280 1280 1280 1280 1280 7680 (80%)

Validation 160 160 160 160 160 160 960 (10%)
Test 160 160 160 160 160 160 960 (10%)
Total 1600 1600 1600 1600 1600 1600 9600

at the transformation level. Furthermore, this splitting took also into account the chronolog-
ical order of the frames. As an example, considering the OR frames: the first four frames
were added to the training set; then, the fifth was added to the Validation set; hence, again,
the subsequent four frames were added to the Training Set; and, lastly, the tenth frame
was added to the Test Set. This repeats cyclically and the starting point of this “cyclical
split” randomly changes from transformation to transformation. Fig. 4.11 visually shows this
process.

GA 881782 Page 26 | 74

Fig. 4.11. Splitting Frames into Training, Validation, and Test Sets

The motivation behind this split is that by randomly splitting the samples, in the Validation
or Test sets, we could have had a non-balanced distribution of the frames in relation to the
railway line; e.g., we could have had 600 frames related to the first half of the line and 360
frames related to the second half. Instead, by “controlling” the split, we can evaluate how the
network performs along the whole railway line.

4.4.1.2. Training, Validating, and Testing U-Net

To implement the RDM, we trained the U-Net by taking into account the Training and Valida-
tion sets just presented and adopted the following procedure. First, we resized the images
from 2080x1170 to 480x270, then, we loaded the pre-trained weights obtained as described
in Section 4.3.2.3; notably, 480x270 is also the dimension of the mask U-Net produces in
output. Hence, we set the network’s parameters and hyperparameters as reported herein:

• Adam Optimizer with Learning Rate equals to 1e-4;
• BCEWithLogitsLoss as the loss function;
• Batch size equal to 16;
• Maximum number of epochs equal to 100 (for the feasibility of the training - each

training epoch takes about 12 minutes to be completed);
• Early Stopping criterion with patience equal to 10 (i.e., if the loss computed on the

validation set does not decrease for 10 epochs the training stops).
The U-Net performances during the training phase in terms of loss and Dice Score are
reported in Fig. 4.12. The lowest loss on the Validation set was reached at the 72nd epoch
(best epoch), hence, given the Early Stopping criterion, the training stopped at the 82nd
epoch. At the best epoch we had, as for the Training set, a loss of 0.682516 and a Dice
Score of 0.9954, while, concerning the Validation set, the loss was equal to 0.682545 and
the Dice Score was equal to 0.9907.
Hence, we saved the weights obtained at the 72nd epoch and proceeded with the following
tests.

Testing U-Net on the Test Set. First, we tested the performance of U-Net on the Test
set defined in the section above. Fig. 4.13 reports the average Dice Score and loss the
network achieves on the Test set as a whole (All) and for each sub-class (Original, Bright,
Dark, and so on). Notably, there is no transformation on which the U-Net performs extremely
better or extremely worse compared to the others; the “Rain” transformation may appear a
bit “problematic”, however, by looking at the scale of the y axes, the Dice Score is always
above the 0.9988 threshold. For the sake of completeness, Fig. 4.14 reports the masks

GA 881782 Page 27 | 74

Fig. 4.12. Training U-Net on the Augmented Dataset

generated by U-Net for some frames of the Test set.

Fig. 4.13. Average Dice Score and Loss of U-Net on the Test Set

Given these results, we can conclude that U-Net is quite suitable for such a task (in this
scenario, with this specific dataset) and, in case no obstacles are present or rail tracks, it
does not require any post-processing to adjust the predicted mask (as, instead, happened
for SegNet in [9]).

Testing U-Net on Frames with Obstacles. The dataset used so far contains only “Free
Track” samples, i.e., there are no obstacles within the frames. Hence, to deeper test the
U-Net, we put a vehicle on the rail tracks in the simulated scenario and collected a new
video we named “With Car” Video (WCV). Then, we processed this video with the U-Net.
By performing this test, we noticed that the obstacle introduces some noise in the predicted
mask, especially when it is close to the train (see Fig. 4.15). Worth underlining, the fact that
U-Net encounters these difficulties may also be an indicator of the fact that there may be
an obstacle on the rail tracks. However, it would be better not to rely (only) on this sort of
miscalculation to detect obstacles as it could not be robust in time. Therefore, we needed to
apply some post-processing to avoid this issue as described in the following.

4.4.1.3. U-Net Post-Processing

First of all, it is necessary to emphasise an important aspect of the RDM. The U-Net imple-
mented above is capable of detecting only the portion of the image which is exactly between

GA 881782 Page 28 | 74

Fig. 4.14. Masks Generated by U-Net for Test Frames

the two rails. However, there may be cases in which obstacles are not positioned exactly on
the rail tracks but are close enough to them that they can be hit by the shape of the train.
Hence, in addition to the noise reduction, with this post-processing, we also aim at enlarging
the predicted mask to let it include the sides of the rail tracks (see Fig. 4.16).
Basing on what discussed so far, the steps of the post-processing are discussed in the
following.

Step 1: Filter out Macro Noise from the Predicted Mask. This is done by taking into
account the domain-specific characteristics of the task we are performing. Basically, we
built a network by considering frames coming from the same railway line and also the WCV
comes from the same railway line. The concept is that it is possible to identify a region of the
frame where the rail tracks will be located (rails region). To identify this region, we merged

GA 881782 Page 29 | 74

Fig. 4.15. Noise in the Predicted Mask Introduced by the Obstacle

Fig. 4.16. Enlarging the Mask produced by U-Net

all the masks produced by U-Net on the WCV (by simply performing a bit-wise and between
them). Then, we computed a “cleaning mask” that we used at run-time to filter out the macro
noise by simply performing a bit-wise and between the prediction and the cleaning mask.
Fig. 4.17 graphically shows what is performed within this step.

Step 2: Filter out any other Micro Noise. In order to prevent any other kind of noise,
once the mask has been cleaned, we also applied some functions of the OpenCV library16

to extract the polygons related to the white-pixel clusters contained in the mask. Trivially, we
assume that the cluster related to the rails would be the larger cluster in the mask (after Step
1), hence, all the other clusters can be eliminated. This is done by considering the polygon
related to the larger cluster and re-drawing the mask by filling this polygon. The process is
summarised in Fig. 4.18.

16https://docs.opencv.org/4.x/d6/d00/tutorial_py_root.html

GA 881782 Page 30 | 74

https://docs.opencv.org/4.x/d6/d00/tutorial_py_root.html

Fig. 4.17. Filtering out Macro Noise from Predicted Masks

Fig. 4.18. Filtering out Micro Noise

Step 3: Enlarging the Rail Track Mask. The enlargement of the mask must be done by
considering the perspective. Hence, we considered the vertexes of the polygon extracted
at the previous step and selected the vertex representative of the “farthest” point (in per-
spective) of the rail tracks. This point is used as the pivot for two or four rotations (1 or 2
left rotations and 1 or 2 right rotations depending on the accentuation of the curve) which,
merged with the original mask, produce what we named “enlarged mask”. Fig. 4.19 shows
what is performed within this step.
To conclude, by applying U-Net and the post-processing algorithm to any frame collected
through the simulated scenario, we should be able to extract the region related to the rail
tracks. Fig. 4.20 summarises the rails detection process performed by the RDM by applying
U-Net and the post-processing algorithm.

Notably, the last step can be bypassed if the DNN is trained on frames whose label masks
already include the sides of the rail tracks; we decided not to adopt this strategy for a simple
reason. In our simulated scenario, the ballast under the rail tracks is visible and separated
from the rest of the environment by means of sharp and well-defined lines; hence, it would
have been trivial to train the U-Net to detect the whole ballast (including the tracks) as this
region has graphics characteristics (which DNNs can easily learn) that are almost completely
different from the rest of the environment. However, in real environments, this is not always
true; there may be cases in which only the rails (not even the sleepers) are “clearly” visible.
In these scenarios, it would still be possible to build a DNN to detect the whole region of

GA 881782 Page 31 | 74

Fig. 4.19. Enlarging the Rail Track Mask

Fig. 4.20. Extracting the Rail Track by Applying U-Net and the Post-Processing Algorithm

interest (rail tracks + sides), but, in case it would not achieve good results, we have shown
an alternative to first detect the rails (task that could be easier) and then enlarge the mask.

4.4.2. Anomaly Detection Module

To implement this module, we adopted an unsupervised approach. The main idea was
to train a DNN on non-anomaly data to allow it to the learn characteristics of “normal” (non-
anomalous) scenarios. Then, when an anomalous image (i.e., with an obstacle) is presented
in input, the anomaly will be (theoretically) poorly reconstructed and thus highlighted. As in-
troduced in Section 4.2.3, we implemented this module by taking inspiration from the studies
conducted in [20] and [21].

GA 881782 Page 32 | 74

4.4.2.1. Data Preparation

The non-anomaly dataset we used to train and validate the DNN was obtained by processing
the FTV through the RDM module as discussed above. In addition, given some properties
of the DNNs we used (presented below), we cropped the frames from 480x270 to 256x256.
Hence, all the images in this dataset, which we will refer to as “Non-Anomaly Dataset (NAD)”,
are characterised by a black background as depicted in the bottom right frame in Fig. 4.20
and have a dimension of 256x256. In addition, we applied the same data augmentation tech-
niques reported in Table 4.6 to obtain the Augmented NAD (A-NAD). Tests were performed
by considering both the NAD and A-NAD. In both cases, we split the dataset into Training
(80%), Validation (10%), and Test (10%) sets as reported in Table 4.8. Notably, the A-NAD
considers only 1500 of the original frames (i.e., those contained in NAD) because of some
time and GPU RAM constraints. Basically, the larger the dataset the more time the network
will take to be trained, especially if it would not be possible to adopt “larger” batch sizes as
discussed in Section 4.4.2.3.

Table 4.8: Non-Anomaly Datasets for Unsupervised Anomaly Detection

Set NAD A-NAD
OR BR DA RA SH SF Total

Training 3315 (80%) 1200 1200 1200 1200 1200 1200 7200 (80%)
Validation 414 (10%) 150 150 150 150 150 150 900 (10%)

Test 414 (10%) 150 150 150 150 150 150 900 (10%)
Total 4143 1500 1500 1500 1500 1500 1500 9000

4.4.2.2. Proposed Anomaly Detection Framework

As mentioned, we leveraged the studies conducted within [20] and [21] to build the DNN for
anomaly detection.
First, we tried to adapt the network proposed in [20] (named SSIM-AE) by leveraging the im-
plementation the authors shared on GitHub17. The main problem we encountered in using
this SSIM-AE is that, during the training, the architecture reached a sort of plateau; prac-
tically, given that the rails occupy only a small portion of the image, if the DNN predicts a
full-black image, the loss is quite low and remains constant over time. Therefore, inspired by
the work proposed in [21], we decided to study the behaviour of the DNN they adopted (a
VQ-VAE [28]). As shown in the following, we were able to get some promising results (espe-
cially when it comes to image reconstruction), however, there is still room for improvements
in the context of anomaly detection.
By fusing the concepts expressed in [20] and [21], we implemented a VQ-VAE network
with a SSIM-based loss function (SSIM-VQ-VAE) exploiting some PyTorch implementations
available on GitHub18,19 as starting points.
Before diving into the implementation details, it is important to highlight the main difference
between VQ-VAEs and traditional AEs, as it seems to be the key factor that makes VQ-VAEs

17https://github.com/plutoyuxie/AutoEncoder-SSIM-for-unsupervised-anomaly-detec
tion-

18https://github.com/nadavbh12/VQ-VAE
19https://github.com/Po-Hsun-Su/pytorch-ssim

GA 881782 Page 33 | 74

https://github.com/plutoyuxie/AutoEncoder-SSIM-for-unsupervised-anomaly-detection-
https://github.com/plutoyuxie/AutoEncoder-SSIM-for-unsupervised-anomaly-detection-
https://github.com/nadavbh12/VQ-VAE
https://github.com/Po-Hsun-Su/pytorch-ssim

Fig. 4.21. Hihg-Level Architecture and Functioning of VQ-VAE, excerpted from [28].

suitable for this task, while AEs do not perform properly. As shown in Fig. 4.21, the output
of the Encoder (Ze in the figure), instead of being processed directly by the Decoder (as it
would happen in traditional AEs), is first processed by an embedding algorithm which related
Embedding Space is automatically learnt during the training. To be more specific:

1. The Encoder processes an image and produces in output a block of features named
Ze.

2. Then, this block of features is processed by an embedding algorithm (integrating the
concept of nearest neighbour look-up [28]). Practically, the Embedding Space is com-
posed of a finite number (K, established a-priori) of “centroids” (ei in the figure) which
are updated during the training. Notably, each centroid (or array in the embedding
space) is associated with an ID ranging from 1 to K.
Hence, Ze is processed by the embedding algorithm that substitutes the Ze arrays
with the related nearest centroids to produce Zq. Important to note, the embedding
algorithm works on “depth arrays”. Considering Ze as a 3D matrix with dimensions W,
H and D (where D is actually the number of feature maps in output to the last layer of
the encoder which, in our case, is equal to 128), the algorithm substitutes each Ze[i, j, :]
(where i goes from 0 to W-1, and j goes from 0 to H-1) with the related nearest centroid
(e18 in the figure).

3. Lastly, Zq is processed by the Decoder which will produce the output (i.e., the recon-
struction of the image given in input to the whole network).

Worth highlighting, the embedding algorithm also produces an index map (Z, in Fig. 4.21).
This map contains, in each position (i, j), the ID of the centroid that Ze[i, j, :] should be sub-
stituted with. Hence, for each image, the algorithm produces a single index map which could
be leveraged for anomaly detection since, by modifying a value in this map, we can prac-
tically modify the image that the Decoder will produce in output; reference [21] adopts this
strategy. Conversely, as better discussed below, we only used the VQ-VAE to reconstruct

GA 881782 Page 34 | 74

the image in input, and the anomaly was detected through the SSIM. The “discretization”
introduced by the Embedding Space seems to allow for better results with respect to tradi-
tional AEs. Practically, only a few vectors (ei) are used to represent the black background in
the latent space. All the remaining, instead, are used to reproduce the rail tracks.
The original implementation of VQ-VAE [28] uses a composed loss function where one of
the components, without going deeper with the details, leverages the Mean Squared Error
(MSE) computed between the pixels of the image in input and the pixels of the reconstructed
image. We substituted this MSE-based component with a SSIM-based one for two main
reasons: i) instead of simply computing the difference between pixels, this metric takes into
account different characteristics of the images (namely luminescence, contrast, and struc-
ture [29]) which allows for a more meaningful comparison; ii) the anomaly map is computed
directly within the SSIM-VQ-VAE. The second reason comes from the fact that the Mean
SSIM score (MSSIM, which we used in the loss function) is obtained by comparing the two
images region by region (through convolutions) and averaging these comparisons. These
convolutions produce a score for each pair of pixels of the two images under analysis, hence,
the anomaly map is nothing more that the visual representation of the results of these convo-
lutions. For the sake of knowledge, the MSSIM score is a value in [0, 1], where 1 means that
the two images are practically identical, while 0 means that the two images are completely
different; hence, the SSIM-based component of SSIM-VQ-VAE’s loss function is computed
as 1−MSSIM .

4.4.2.3. Training, Validating, and Testing SSIM-VQ-VAE

To train the SSIM-VQ-VAE, we set the following parameters and hyperparameters:
• Embedding Space with 512 centroids.
• Loss function based on the SSIM. The computation of the SSIM requires setting a filter

to weight the computations; we adopted an 11x11 circular-symmetric Gaussian filter
(as in [29]).

• Adam Optimized with starting Learning Rate equal to 1e-4.
• Batch size equal to 6. The network is quite “heavy” in terms of memory occupation;

this is also due to the fact that, in addition to the network’s weights, also the embedding
space must be saved in memory. This is also the reason why we adopted a reduced set
of frames from the NAD to build the A-NAD (as discussed in Section 4.4.2.1); given that
the batch size could not be greater than 6, increasing the dataset means substantially
increasing the training time.

• Maximum number of epochs set to 100.
• Early Stopping criterion with patience equal to 20.

We trained the network on both the NAD and A-NAD to study the effect of data augmentation.
Figures 4.22 and 4.23 report the performance of the network trained on NAD and A-NAD
separately in terms of losses and SSIM scores. In this case, the SSIM value, besides being
used in the loss function, is also used to evaluate the reconstruction capability of the DNN
since the higher the SSIM score, the better the network reconstructs the images. Notably,
as specified in Table 4.9 (discussed later), in case of training on NAD, the lowest loss on the
Validation set was reached at the 45th epoch (hence, the training stopped at the 65th epoch);
differently, in case of training on A-NAD, the lowest loss on the Validation set was achieved
at the 52nd epoch and the training stopped after 72 epochs. To make trends comparable,

GA 881782 Page 35 | 74

Figures 4.22 and 4.23 report the values of the loss and the SSIM score up to the 65th epoch
in both cases. Actually, because of some accentuated oscillations at the beginning of the
training on the A-NAD, the third chart in both the figures reports the trends from the 10th to
the 65th epoch (for the sake of readability).

Fig. 4.22. Training SSIM-VQ-VAE on NAD and A-NAD: Loss Trends

Fig. 4.23. Training SSIM-VQ-VAE on NAD and A-NAD: SSIM Scores

Besides some oscillations in the first phases of the training, the performance of the network
does not differ that much. It is also important to underline that the two datasets are differ-
ent, therefore, the comparisons of the performances, at this stage, are not that meaningful;
hence, we performed further tests as discussed below.

Testing SSIM-VQ-VAE on NAD and A-NAD Test Sets. Table 4.9 reports the performance
of our network in relation to the best training epoch (i.e., those related to the lowest loss on
the Validation set). For the network trained on A-NAD, we also make some tests to check
how the network performs on the different augmentation classes (transformations in Table
4.6) separately; Fig. 4.24 reports the results in terms of loss (the lower the better), and SSIM
score (the higher the better). Then, for the sake of completeness, Fig. 4.25 presents some
visual results of the reconstruction capabilities of the network.
To conclude, we evaluated the performance of SSIM-VQ-VAE trained on the NAD by consid-
ering the A-NAD Test set, which contains augmented data. Fig. 4.26 reports the results of
these tests in terms of losses and SSIM scores; as expected, given that the NAD does not
contain data different from the original ones, the network trained on this dataset is not able
to properly reconstruct most of the augmented frames. Furthermore, we can also visually

GA 881782 Page 36 | 74

Table 4.9: Performances of SSIM-VQ-VAE at the Best Epoch(s)
Performances on NAD Performances on A-NAD

Best Training Epoch 45 52
Loss on Validation Set 0,047049 0,048762

SSIM Score on Validation Set 0,984478 0,988777
Loss on Test Set 0,046928 0,049173

SSIM Score on Test Set 0,984483 0,988714

Fig. 4.24. Transformation-by-Transformation Performance of SSIM-VQ-VAE when Trained
on A-NAD

note from Fig. 4.25 that the SSIM-VQ-VAE trained on NAD seems not to be efficient with
original data too; indeed, all the reconstructions are characterised by that red patina which is
absent in the reconstructions made by the network if trained on A-NAD. Given this evidence,
we can affirm that augmentation allows the networks to behave better in all the considered
light and weather conditions (including the Original one). Hence, in the following analyses,
we will consider only the SSIM-VQ-VAE trained on A-NAD.

Testing SSIM-VQ-VAE on Frames with Obstacles We evaluated the performances of
SSIM-VQ-VAE (trained on A-NAD) on the frames extracted from the WCV (as we did for
U-Net in Section 4.4.1.2). Fig. 4.27 reports some examples of anomaly maps generated
through the SSIM-VQ-VAE; notably, we applied a simple post-processing step based on the
K-Means clustering algorithm20 to cluster similar pixels and thus try to reduce the “noise”
in the anomaly maps (for the K-Means, we used K=7); hence, we computed a heat-map to
further highlight the anomalies.
However, it is important to underline that the implemented SSIM-VQ-VAE, besides the fact
that the anomaly is not perfectly outlined, suffers from some other problems (e.g., false
positives) which are discussed in the following section.

20https://www.kdnuggets.com/2019/08/introduction-image-segmentation-k-means-clu
stering.html

GA 881782 Page 37 | 74

https://www.kdnuggets.com/2019/08/introduction-image-segmentation-k-means-clustering.html
https://www.kdnuggets.com/2019/08/introduction-image-segmentation-k-means-clustering.html

Fig. 4.25. SSIM-VQ-VAE Reconstructions

Fig. 4.26. Performances of SSIM-VQ-VAE trained on NAD (orange) and on A-NAD (blue)
evaluated on A-NAD’s Test Set

GA 881782 Page 38 | 74

Fig. 4.27. Examples of Anomaly Maps Generated through the SSIM-VQ-VAE

GA 881782 Page 39 | 74

4.5. Evaluation of Results

In the above sections, we discussed the implementation of the Rails Detection Module based
on U-Net (Section 4.4.1) and of the Anomaly Detection Module based on SSIM-VQ-VAE
(Section 4.4.2). Fig. 4.28 shows a sub-pipeline, extracted from the Obstacle Detection
Architecture in Fig. 4.2, which takes into account only the Rails and Anomaly Detection
Modules discussed in this chapter together with their post-processing steps.

Fig. 4.28. Rails and Anomaly Detection Pipeline

We evaluated the theoretical applicability of such a pipeline from the perspective of the KPIs
defined in Table 4.2.
As for the Computational Time (KPI3), by evaluating the processing times on the 1663
frames extracted from the “With Car” Video (WCV), on average, the whole pipeline takes
about 476 milliseconds (ms). The various processes contribute as follows:

• U-Net Processing: ∼20.6 ms (∼48.5 frames per second - FPS)
• U-Net Post-Processing: ∼363 ms (∼2.7 FPS)
• SSIM-VQ-VAE Processing: ∼38.9 ms (∼25.7 FPS)
• SSIM-VQ-VAE Post-Processing: ∼53.8 ms (∼18.6 FPS)

Notably, the process that takes more time, and actually increments the computation time by
a lot, is the post-processing we implemented to adjust the mask produced by U-Net. Hence,
further optimisation would be required (at least) in this direction to make the pipeline suitable
for real-time predictions. In addition to that, this approach has other limits that should be
addressed before considering it viable.
The 1663 frames extracted from the WCV contain the following peculiarities (also depicted
in Fig. 4.29):

• In frames from 0 to 37, there is a tree on the left which shadow is projected on part of
the rail tracks.

• A human operator would be (probably) capable of seeing the car starting from frame
631 (about 424 meters in advance), even though is quite imperceptible. Also, we could
practically say that the train collides with the car in frame 949.

GA 881782 Page 40 | 74

• In almost all the frames, the shadows of the catenaries on the right hand of the rails
are projected on the rail tracks.

Fig. 4.29. Peculiarities of WCV Frames

While catenaries’ shadows do not seem to introduce complications, the proposed pipeline
has some limits when it comes to the other two features.
Starting from U-Net (RDM), despite it could be possible to “see” the car starting from frame
631, the mask U-Net produces for that frame (and some subsequent frames) does not in-
clude the part of the track occupied by the car affecting the detectability of the obstacles
and, consequently, the potential performance of the pipeline according to KPI1 (Detection
Distance). Indeed, masked frames (see the bottom right picture in Fig. 4.28) would start
“containing” the car approximately from frame 791 (about 180 meters before the collision),
hence, for 151 frames (and roughly 240 meters), the car could not be detected. The two
main possible causes and directions for improvements are listed herein:

• The labelling process should be performed more meticulously and the self-labelling
process should be improved and controlled/tested deeply.

• The down-scaling of the images, from 2080x1170 to 480x270, may introduce some
information loss. Practically, in frame 631 (as well as other subsequent frames), the
portion occupied by the rails “on the horizon” is quite thin. By down-scaling the images,
and obviously the related masks (labels), the segmentation may get lost. A possible
solution would be not to down-scale the images too much, but this will increment the
GPU memory required by U-Net to be trained and to process the images. Besides that,
also the architecture of U-Net may become more complex (more nodes and/or layers),
which would increase the memory space needed to “store” the weights of the U-Net
itself.

Fig. 4.30. False Positive Generated because of the Shadow of a Tree

GA 881782 Page 41 | 74

Fig. 4.31. Missed Detection When the Anomaly is too Distant from the Train

As for the SSIM-VQ-VAE (ADM), limitations are more related to the reconstruction capabil-
ity of the network and resulting false positives/negatives. Fig. 4.30 shows the false positive
related to the detection of the shadow of the tree in frame 30. In addition, Fig: 4.31 shows the
anomaly maps for frames 791 (about 180 meters from the obstacle), frame 850 (about 115
meters), and frame 890 (about 67 meters). Considering frame 791, the car is in the masked
frame but is not highlighted in the anomaly map. This may be due to the fact that the network
properly reconstructs also the anomaly, hence, when comparing the reconstruction with the
original masked frame, the anomaly is not highlighted; it is like the network is somehow
over-performing. These aspects clearly affect the performance of the network from the per-
spective of KP1 and KP2 (Obstacle Coverage). Indeed, if on the one hand, the coverage
of the whole VBOBS (KPI2) can be potentially increased by introducing an Anomaly Detec-
tion approach based on unsupervised learning, on the other hand, the false positives that
such approach could introduce may affect the real coverage of the system (i.e., the system
detects as obstacles items that should not be detected). As for KPI1, the obstacle under
analysis is properly detected at about 70 meters, which may affect the implementability of
the approach in real scenarios (further considerations are given in the following section).
Some of the possible actions that may be taken to deeply investigate the suitability of the
SSIM-VQ-VAE against the issues reported above are:

• Increase the dataset including more samples. This would potentially allow the network
to better learn the characteristics related to false anomalies (e.g., shadows, sun flares,
etc.) and produce more suitable reconstructions.

• Increase the dimensions of the latent space. In this analysis, we set 512 centroids.

GA 881782 Page 42 | 74

As discussed in Section 4.4.2.2, the features extracted from the input images by the
encoder are substituted, at a given point, with the vectors (centroids) contained in
the latent space. This substitution represents a sort of architectural limit as the re-
constructed image could not be perfectly identical to the input image. Probably, by
increasing the dimensions of latent space, we could have better reconstructions that
would allow for better identification of the anomalies.

• Slightly modify the dataset. After the resizing and the cropping, the 256x256 images
we used to train and test the network are characterised, for a very large percentage, by
a black background. Tests may be performed by varying the dimensions of the images
(i.e., larger than 256x256) and/or by cropping them differently (to let the rails occupy
more space in the image).
Alternatively, it would be possible to process directly the original frames (without pre-
processing them through U-Net); nevertheless, at that point: i) the architecture pro-
posed in 4.2 should be changed as the RDM and the ADM would work in parallel; and
ii) it would be a quite different task which could introduce other complications since the
images that should be reconstructed would be more complex (in terms of number and
variety of the items within the frames that should be properly reconstructed).

To conclude, for the sake of knowledge, the SSIM-VQ-VAE, besides the Reconstruction and
the anomaly map, produces a SSIM (Anomaly) Score which is a numerical representation
(scalar) of the anomaly map. Practically, the higher the score the more different the two
images, hence, the higher the probability that there is an anomaly. Fig. 4.32 plots the
SSIM Scores for each of the 1663 frames of the WCV. The blue line represents the actual
scores, i.e., those produced by the SSIM-VQ-VAE; the dashed red line represents how these
scores should ideally look like, if there is no anomaly the SSIM Score should be 1 (the
two images are identical), otherwise, it should be lower depending on the portion of the
image occupied by the anomaly; lastly, the dashed green line represents the ideal trend but
takes into account some reconstruction or processing (theoretically approximated) errors
that could not be completely eliminated from DNNs in general (an example, for this DNN,
is the error introduced by the latent space as discussed above). Notably, there is a drop
around frame 37 (false positives related to the tree’s shadow); also, the anomalies should
be detected, hence, the trend should start dropping, at least from frame 791, however, the
chart shows a sudden drop just a few frames before the potential collision.

GA 881782 Page 43 | 74

Fig. 4.32. SSIM Score Generated by the SSIM-VQ-VAE

4.6. Discussion of Results

As mentioned in Section 4.1, obstacle detection systems typically involve different sensors
(including LiDARs, radars, and cameras); in this context, cameras are used to identify the
type of the obstacle while their detection is primarily demanded to the other sensors. Also,
when it comes to VBODSs specifically, most of them rely on supervised DL approaches
which fail in detecting anomalies that have not been considered during the training phase.
With this proof-of-concept we aimed at understanding whether it would have been possi-
ble to detect any kind of obstacle (both known and unknown a-priori) while leveraging a
cost-effective sensor (i.e., a camera). Specifically, we investigated the possibility of using
Unsupervised DL models to detect obstacles that are not known a-priori while leveraging
data collected through a simulated environment we developed by exploiting RoadRunner
(see Section 4.3).
Given the large attention the (Vision-Based) Object Detection topic has received during the
last years within the literature, in this document, we mainly focused on the implementation
of the Anomaly Detection Module to study the effectiveness of Unsupervised approaches
in detecting anomalies and answer to the RQs reported in Table 4.1. In doing so, we also
implemented the Rails Detection Module to practically process and mask video frames to
produce data to train and test the SSIM-VQ-VAE (the core component of the ADM).

4.6.1. Evaluation of KPIs and Limits of the Approach

In Section 4.5, we have deeply analysed the performance of the implemented approaches
with respect to KPIs reported in Table 4.2. In this section, we summarise the obtained results
and highlight their relevance in connection with the practical applicability of the proposed
pipeline (see Fig. 4.28), at the current stage of development, in real scenarios. Table 4.10
summarises the results we obtained in relation to the considered KPIs.
Our tests show that the anomaly detection approach can effectively support the identification
of obstacles not specified in advance (KPI2). As for the usage of just one RGB camera on

GA 881782 Page 44 | 74

Table 4.10: Summary of Results against KPIs.
KPI Results

KPI1: Detection Distance Basing on our tests, anomalies can be detected within a range of about 70 meters.

KPI2: Obstacle Coverage

Object Detectors are limited to a specific number (defined a-priori) of object classes.
In our view, this number can be increased by adopting Unsupervised Anomaly
Detection approaches since they do not require to be trained with pre-defined sets of
obstacles, rather, they focus on highlighting any kind of difference from the nominal
condition (i.e., free tracks).

KPI3: Computation Time At the current stage of development, the implemented pipeline elaborates a single
video frame in about 476 ms.

board the train, the pipeline we implemented allows detecting the obstacles within a range
of about 70 meters (KPI1). Of course, this specific result strongly limits the applicability
of just one camera when the stopping distance, on average, is greater than 70 meters;
however, we identified a list of actions that can be taken to potentially improve the current
performances and increase the detection distance (see Section 4.5). In addition to that, as
for the computation time (KPI3), the pipeline takes about 476 ms to process a single video
frame. Worth noting, the computation time should be considered in relation with the FPS
of the camera; for example, a 30 FPS camera records a frame each 33.3 ms, therefore, if
the system processes a frame within that time, it could be considered viable for real-time.
Clearly, to higher FPS correspond lower computation time constraints (e.g., 60 FPS camera
→ max 16.6 ms per frame). However, the pipeline we implemented largely exceeds these
time constraints; to be specific, the processes that contribute most to the computation time
are the two post-processing algorithms, rather than the two Deep Learning approaches (see
Section 4.5). Therefore, further optimizations are required before considering the system
viable for some real-time applications, especially in high-speed railways.
However, it is important to mention that there are some scenarios in which the experimented
VBODS approach, once properly tested and further optimised, can potentially bring bene-
fits and help to improve safety or automation in a cost-effective manner. For example, the
one-camera solution could be useful to assist the driver, or to implement autonomous be-
haviours in secondary railway lines, e.g., regional or urban (intra-city) lines, where trains
run at reduced speed. Actually, it could also be used in main lines as low-speed comple-
ment and/or to assist the driver during procedures such as the “Track Ahead Free”, where
the driver is asked for confirmation that no obstacles are on the same track circuit the train
is occupying during the ERTMS/ETCS “Start of Mission” scenario [1, 30], or to integrate a
“return to home” functionality; for example, in case of malfunction of driving systems that
would not allow trains to safely operate at their maximum efficiency, a one-camera system
could support the train to autonomously and safely reach the nearest station by proceeding
at reduced speed.

4.6.2. Main Findings and Future Improvements

Beyond autonomous train driving applications, as also mentioned in Section 4, our analyses
were also oriented at understanding whether the approaches we investigated could be useful
to detect obstacles in other contexts and, based on the obtained results, it is not so visionary
to assume that such DNNs represent suitable starting points for more static applications,

GA 881782 Page 45 | 74

e.g., obstacle detection within the Level Crossings area.
In summary, this proof-of-concept allowed us to investigate possible DL approaches and
techniques that could be exploited to deal with obstacle detection starting from what has
already been proposed within the rail and other sectors (RQ3). The main key findings that
can be deducted from our analyses are reported herein:

• Editors like RoadRunner could help to simulate driving scenarios and safely collect
a potentially infinite amount of data to initially train and validate AI models. In com-
bination, Data Augmentation techniques allow simulating weather and light condition
to have a more comprehensive dataset encompassing as much environment aleatory
as possible. It is also important to mention that scenario developed in RoadRunner
can be integrated within other 3D editors, like Unity or Unreal Engine, which would
allow for further customisation (e.g., directly implement different light and weather con-
ditions within the editor itself) of the environment making it more similar to real railway
scenarios.

• Transfer Learning could help to obtain more stable results and reduce the training time
of DNNs (see Section 4.3.2.4).

• Self-Training (that we combined with Transfer Learning, Section 4.3.2.4) seems to
be a promising direction towards which investigating further when it comes to semi-
automatic labelling. Possibly, in order to improve the performances, the starting dataset
could be larger (e.g., 20-30% of the dataset instead of 10% as in our case) and the
down-scaling of the images can be reduced (e.g., from 2080x1170 to 950x540 instead
480x270) not to lose too much information. In the second case, it is important to note
that to larger images could correspond larger GPU memory requirements.

• Autoencoders oriented at reconstructing the image in input can be adopted, if properly
adapted, to detect anomalies within images (RQ1). In this case, the suggestion would
be to apply a pre-processing step to eliminate as much as possible the disturbing ele-
ments that would not be useful for the task in order to allow the network to “focus” only
on the relevant aspects. For example, we masked the frames instead of using them
as they were collected; however, it is important to underline that, in our case, given
that the images were characterised by a black background, traditional Autoencoders
did not work properly according to the tests we performed.

In addition to that, there is another important aspect to discuss. Our tests were performed
by considering one of the simplest possible scenarios, i.e., a railway line with a single track.
However, we think that the approach can be scaled also to railway lines with multiple tracks.
In Section 4.3.2.1, we have discussed how RailSem19 was customised; however, there is
another thing that should be underlined. Basically, the scripts we adapted to extract rail la-
bels from RailSem19 propose two approaches: i) extract all the rail tracks contained in each
frame; or ii) extract only the rail track that the train is travelling (ego rail). Although, in this
proof-of-concept, we analysed the simplest case, we actually adopted the first approach so
that the pre-training on the customised RailSem19 (Section 4.3.2.3) could be also exploited
in the future to deal with more complex scenarios involving multiple rail tracks. Therefore,
U-Net performances reported in Section 4.3.2.3 (Table 4.3 to be specific) are related to the
capability of the network of detecting multiple rail tracks within the same video frame. The
results we obtained suggest that is not so visionary to assume that, in case the railway line
to be monitored would involve multiple rail tracks, the Rails Detection Module would be still

GA 881782 Page 46 | 74

capable of performing properly. Then, to perform the object and anomaly detection on the
rail track the train is traveling (ego-perspective track), it would we be possible to extract the
ego-perspective track by filtering out the other tracks through an algorithm that would be sim-
ilar to that discussed in Section 4.4.1.3 (Phase 2); hence, it would be possible to proceed
with the ODM and ADM as presented in the above sections. Alternatively, it would be also
possible to fine-tune U-Net, by feeding it with labels highlighting only the ego-perspective
track and leaving the other tracks as part of the background, so that it would be capable of
directly extracting the ego-perspective track. Basing on other tests we performed, this ap-
proach seems to be viable and seems not to introduce additional complications (especially
if combined with the filtering algorithm), however, further investigations would be required to
validate its effectiveness.
To conclude, the results obtained within this proof-of-concept indicate that the approaches
we have investigated have good potential in the context of autonomous driving and beyond;
however, as also mentioned above, there is still room for some improvements and further
actions and tests can be taken (and are recommended) to assess their viability for some
specific applications in real-world scenarios. With the aim of facilitating future research, we
report in Table 4.11 the category of possible approaches that, in our view, could represent
suitable starting points and/or alternatives to improve or support the modules analysed in
this chapter and implement those we did not address within this manuscript.

Table 4.11: AI Approaches for Obstacle Detection
Module Implemented Approach Suitable Alternatives

Rails Detection SS Approach based on U-Net [11]
(Section 4.4.1)

Other SS Approaches (e.g., [8,9]).

Object Detection / Potentially any Object Detector [4,12,13] (e.g., YOLO [14]).

Anomaly Detection Unsupervised Approach based on
VQ-VAE [28] (Section 4.4.2)

DL Approaches for Image Reconstruction (e.g., based on
AEs [20,21]) or Image Synthesis (e.g., based on GANs [18]
or ad-hoc DNNs [19]).
Alternatively, DL combined with Stereo Vision (e.g., [31,32]).

Distance Estimation /
DDNs in case of Objects Distance Estimation (e.g., [22]), or
Triangulation in case of Anomalies Distance Estimation and
Stereo Vision (e.g, [23]).

The table summarises the literature analysis we have discussed in Section 4.2, where we
also reported the reasoning we applied to choice the specific DL approaches we investi-
gated. For the sake of simplicity, we briefly recall what we have discussed in that section in
relation to the approaches we implemented and some suitable alternatives:

• For the Rails Detection Module, approaches based on DL could be more suitable than
traditional Computer Vision approaches as they can better adapt to changes in the en-
vironment (e.g., different light and weather conditions) [4]. Particularly, SS approaches
(mainly based on AEs) represent suitable solutions to extract the rail tracks from in-
put frames as demonstrated in this document but also in other previous work carried
out within the rail sector [8, 9]. Alternatively, lane detection approaches (as those re-
viewed in [33]) can be borrowed from automotive and potentially adapted for rail tracks
detection (RQ2); also in this case, even though they have also been implemented clas-
sification and object detection approaches, SS ones seem to be the most adopted.

GA 881782 Page 47 | 74

• Object Detection is one of the most addressed DL-based Computer Vision tasks within
the literature. Potentially any kind of the so-called object detectors can be adopted (and
adapted) for this task, as those reviewed in [12,13] (RQ2). Notably, some of them, e.g.,
detectors belonging to the Region-based CNNs (R-CNN) and YOLO families, have
already been tested for object detection on rail tracks [4,14].

• As for the Anomaly Detection Module, starting from works that have been proposed
to cope with anomaly detection within images depicting, from a high-level perspective,
manufacturing/industrial items [20,21] (RQ2), we implemented an approach based on
VQ-VAEs (a particular kind of AEs) to directly reconstruct the image in input and then
produce the anomaly map by comparing the original and the processed images. How-
ever, image synthesis approaches, e.g., based on Generative Adversarial Networks
(GANs) [18] or DNNs built ad-hoc [19], seem to be suitable alternatives to reconstruct
the images in input. In addition, in this document, we focused on a single camera
for the motivations expressed in Section 3, but it is also important to mention that the
combination of DL and stereo vision (i.e., multiple cameras) [31,32] could represent a
suitable alternative to implement vision-based anomaly detection.

• Lastly, for the Distance Estimation Module, we think that the DNN developed within the
SMART project (DisNet [22]) could be a suitable starting point to detect the distance
of the objects from the camera. On the other hand, in case of anomalies, stereo
triangulation [23] could be a solution in case multiple cameras are adopted.

GA 881782 Page 48 | 74

5. Cooperative Driving for Virtual Coupling of Autonomous
Trains

5.1. Introduction

In RAILS Deliverable D2.2 [5], the cooperative driving for Virtual Coupling (VC) of au-
tonomous trains case study has been addressed to investigate the potential adoption of
AI techniques for enhanced rail safety and automation. Specifically, after a deep analysis of
the state of the art, and considering the VC results in the automotive field, a methodological
proof-of-concept has been provided, in which the following research questions have arisen:

• RQ1 Can we transfer to railway VC some of the methods already exploited for vehicle
platooning?

• RQ2 Can AI approaches be leveraged to ensure the effectiveness of the tactical layer
functionalities both in nominal and uncertain environments?

• RQ3 Can we address possible answers to RQ1 and RQ2 through a proof of concept in
order to inspire future developments and a technology roadmap?

In an attempt to give an answer to the above questions, AI approaches have been evalu-
ated to explore the technical feasibility of railway VC. Among them, a Deep Reinforcement
Learning (DRL) approach based on the Deep Deterministic Policy Gradient (DDPG) strategy
has been identified as one of the potential solutions to implement railway VC from a tactical
layer perspective. Expected results and possible criticalities related to the exploitation of this
approach have been stressed.
In view of this methodological analysis, in what follows we propose the consequent ex-
perimental part of the aforementioned proof-of-concept. The latter accounts for the defini-
tion of an effective and robust control strategy for railway VC, able to simultaneously cope
with uncertain nonlinear heterogeneous train convoys, uncertain nonlinearities and unex-
pected/unpredictable external factors. Specifically, we design a novel DDPG controller to
coordinate and manage the Virtually Coupled Train Set (VCTS) such that this latter can
autonomously adapt its behaviour to the encountered driving scenarios. The effectiveness
of the proposed approach is evaluated via a numerical analysis, carried out via an ad-hoc
implemented simulation platform. Namely, after verifying the efficiency of the training pro-
cess in ensuring the fulfillment of the VC control objectives, extensive non-trivial simulations
involving cooperative manoeuvres in concrete operational scenarios are performed for the
validation phase. Results confirm how the proposed model-free DDPG approach guarantees
the VC for nonlinear heterogeneous train convoys, despite the co-presence of uncertainties
and unknown external factors.
Finally, the advantages and the benefits of the proposed DRL controller are disclosed via
a comparison analysis against an optimal model-based strategy. The comparison is car-
ried out exploiting some of the Key Performances Indicators (KPIs) provided in the previous
Deliverable (see Table 5.1) as evaluation criteria to assess the feasibility of VC in railways.
The comparison analysis shows that the proposed control algorithm can provide meaningful
advantages in terms of lane capacity, robustness to parameters uncertainties, flexibility to
the encountered driving scenarios, and energy saving.

GA 881782 Page 49 | 74

Table 5.1: KPIs to evaluate the effectiveness of VCTS paradigm [5]

KPI Description

KPI1 Time gap, i.e., the time interval between two consecutive consists

KPI2
Time to collision, which is the remaining time before a rear-end accident, assuming unchanged
speeds of both consists

KPI3 Trip time, that is, the time needed to accomplish a given mission

KPI4 Tracking error, i.e., the error between the desired reference behaviour and the actual one

KPI5 Energy consumption, defined as in [34], to evaluate the energy efficiency

5.2. Model Description

A VCTS is a convoy of N heterogeneous autonomous consists able to share their state in-
formation, i.e., the absolute position and speed, with the other communicating consists via a
Train to Train (T2T) wireless communication network. The reference behaviour for the VCTS

Fig. 5.1. VCTS of N autonomous consists receiving information from RBC through the T2I
communication network (blue lines), and sharing information among each other through the

T2T communication network (orange lines)

is imposed through a Train to Infrastructure (T2I) communication network by the Radio Block
Center (RBC), which acts as a virtual leader and is indexed with 0 (see Fig. 5.1 for a concep-
tual view of a VCTS). The communication architecture proposed in Fig. 5.1 reflects the well
assessed Leader-Predecessor-Follower (LPF) communication topology deeply exploited in
the automotive field (see for instance [35]). We highlight that future research will be devoted
to the investigation of the latency sources in the communication topology.
The aim is to design a decentralised DDPG control algorithm able to fulfill the VCTS tacti-
cal layer functionalities described in [36]. Namely, the tactical layer coordinates the actual
platoon movements and manoeuvres from the instance a joining request is received until
the platoon is dissolved, according to the composition, ordering and coupling/decoupling in-
struction imposed by the strategic layer. The latter is herein emulated through a basic logic
according to the VC operational states and transitions proposed in [37,38].

GA 881782 Page 50 | 74

In view of this, the control algorithm has to ensure that: a) each consist i (i = 1, · · · , N)
travels at the desired speed imposed by the virtual leader; b) it maintains a secure inter-train
distance (w.r.t. the preceding vehicle i − 1), which explicitly takes into account the relative
braking curve. To this aim, the proposed DRL solution computes the desired driving action
to be imposed to the operational layer, that is, the Automatic Train Operation (ATO) system
embedded in each consist i, as shown in Fig. 5.1.
We emphasize that the effectiveness of the VCTS paradigm is especially crucial for High-
Speed Trains (HSTs), where, due to the high-speed operating ranges, uncertain factors have
a stronger impact on the VC performance.

5.2.1. Consists Dynamics

To emulate the consists dynamics, the behaviour of each train, identified with its related
DDPG agent i (∀i = 1, · · · , N), is described by its nonlinear longitudinal dynamics, which
accounts for the driving/braking propulsion system, the aerodynamic drag and the effects of
unknown external disturbances, as in [39]:

ṗi(t) = vi(t) (5.1)

v̇i(t) =
1

Mi(t)

[
ui(t)−Ri(vi(t))

]
+ ωi(t) (5.2)

where pi(t) [m], vi(t) [m/s] are the position and speed of the i-th train, respectively;
Ri(vi(t)) = C1,i(t) + C2,i(t) |vi(t)| + C3,i(t) vi(t)

2 is the propulsion resistance expressed via
the Davis formula [40], with C1,i(t) [kg m/s2], C2,i(t)[kg/s] and C3,i(t) [kg/m] representing the
Davis parameters of the aerodynamic drag; Mi(t) [kg] is the i-th train mass; ωi(t) [m/s2] rep-
resents the unknown nonlinearities due to the friction force, external disturbances, such as
wind force, the curvature and slope forces imposed by the railway track [41]; ui(t) [N] is the
driving or the braking force, evaluated by the DDPG agent by exploiting local measurements,
i.e., xi(t) = [pi(t) vi(t)]

⊤, and the networked information shared by the communicating con-
sist i− 1 and the leader, i.e., xi−1(t) = [pi−1(t) vi−1(t)]

⊤ and x0(t) = [p0(t) v0(t)]
⊤.

Note that the value of the i-th train parameters (i.e., Mi(t), C1,i(t), C2,i(t), C3,i(t)) strongly
depends on the different driving conditions, the changing of the operating speed and opera-
tional scenarios. Here, to take into account this variability, we assume all trains parameters
to be uncertain and time-varying. In detail, we model the parameters as:

Mi(t) = M̄i + δMi(t) C1,i(t) = C̄1,i + δC1,i(t) C2,i(t) = C̄2,i + δC2,i(t) C3,i(t) = C̄3,i + δC3,i(t)
(5.3)

where (̄·) indicates the nominal values of the corresponding parameters assumed to be
known (for instance, M̄i can include the rotating mass factor), while δ(̄·)(t) represents their
related uncertainties.
Conversely, the reference behaviour imposed by the virtual leader is described by the fol-
lowing non-autonomous system:

ṗ0(t) = v0(t) (5.4)

v̇0(t) = u0(t) (5.5)

being p0(t) [m], v0(t) [m/s] and u0(t) [m/s2] the absolute position, speed and acceleration of
the virtual leader, respectively.

GA 881782 Page 51 | 74

5.2.2. Safety Relative Braking Distance

The VCTS paradigm breaks the walls from absolute to relative braking distance (RBD)
among the consists, in order to increase line capacity. Thus, an accurate definition of the
safe inter-train distance ds,i(t) is provided for each train i (∀i = 1, · · · , N). According to [42],
it takes into account the most favourable braking condition for the preceding consist i−1 and
the guaranteed emergency brake rate for the consist i, i.e., the most unfavourable braking
one. In addition, ds,i(t) explicitly considers the braking reaction delay, the time required for
its computation, the maximum and minimum acceleration rate, as well as uncertainties in
train location information.
Therefore, the safe inter-train distance is given by:

ds,i(t) = dfmax,i(t)− dlmin,i−1(t) + sm + 2 es,i(t) (5.6)

where, dfmax,i is the most unfavourable braking distance of consist i; dlmin,i−1 is the most
favourable braking distance of consist i− 1; sm is the safety margin imposed between adja-
cent consists; es(t) is the trains localization error. More specifically, dfmax,i and dlmin,i−1 are
computed as follow:

dfmax,i(t) =
(
vi(t) + ves,i(t)

) (
tb,i + tc,i + tre,i

)
+

+
1

2
ad,i t

2
re,i +

(
vi(t) + ves,i(t) + ad,i tre,i

)
te,i +

(
vi(t) + ves,i(t) + ad,i tre,i

)2

2 abs,i

+

(
1

2 ab,i
− 1

2 abs,i

) (
vi(t) + ves,i(t) + ad,i td,i − abs,i tbu,i

)2

, (5.7)

dlim,i−1(t) =

(
vi−1(t)− ves,i−1(t)

)2

2 abs,i−1

+

(
1

2 ab,i−1

− 1

2 abs,i−1

) (
vi−1(t)−ves,i−1(t)−abs,i−1 tbu,i−1

)2

,

(5.8)
where ves,i(t) and ves,i−1(t) are the speed measurement error for consist i and i− 1, respec-
tively; vi(t) and vi−1(t) are the speed of consist i and i − 1, respectively; ti,b is the sensing
delay for consist i; ti,c is the response time to the braking command for consist i; ti,re is the
i-th train traction cut-off time; ti,e is the emergency brake establishment time for consist i;
ti,bu and ti−1,bu are the emergency brake establishment extra time for consist i and i − 1,
respectively; ai,d is the maximum traction acceleration for consist i; ai,b and ai−1,b are the
maximum braking acceleration for consist i and its preceding, respectively; ai,bs and ai−1,bs

are the normal braking acceleration of consist i and its preceding, respectively. Hence, via
the characterization of the train brake performance in terms of the equipment response time,
cut-off traction time, brake establishment time, and all the factors influencing reaction delays,
the safe inter-train distance can be expressed as a function of the preceding train speed.

Remark 1. Without loss of generality, the speed measurement error vi,es(t) is modelled as
a random variable uniformly distributed within the range [0; 1] [km/h]. Moreover, the train
localization error es(t) is again modelled as a random variable, but uniformly distributed
within the range [−0.5; 0.5] [m] [41,43].

GA 881782 Page 52 | 74

5.2.3. Problem Statement

Consider a VCTS of N heterogeneous autonomous HSTs, sharing state information via T2T,
plus a virtual leader imposing the reference behaviour for the whole platoon. Find a robust
DDPG control strategy ui(t) driving the motion of each consist i (∀i = 1, · · · , N) in tracking
the reference behaviour x0(t) while maintaining the safe inter-train distance ds,i(t) w.r.t. its
predecessor i− 1, i.e.:

lim
t→+∞

∥v0(t)− vi(t)∥ = 0, (5.9)

lim
t→+∞

∥pi−1(t)− pi(t)− ds,i(t)∥ = 0, (5.10)

despite the presence of:
• uncertainties in train dynamic parameters, i.e., Mi(t), C1,i(t), C2,i(t), C3,i(t);
• heterogeneity in trains dynamics, as they can be characterized by different operational

performances (e.g., different braking capabilities, different speed categories);
• uncertainties in track conditions (e.g., adhesion factors, gradients profile), external dis-

turbances (e.g., wind speed) and unknown exogenous forces due to the curvature and
the slope, i.e., ωi(t);

• uncertainties in reaction delay when performing braking manoeuvres, which influence
the inter-train distance ds,i(t);

• uncertainties in train location information, indicated with es(t);
• on-board speed error measurements for each train i, indicated with vi,es(t).

5.2.4. DDPG Virtual Coupling Controller

The DRL theory is exploited for the development of a control strategy able to solve the VC
problem stated in Section 5.2.3. In the DRL framework, an agent interacts with an unknown
environment which is commonly modelled as a Markov Decision Process (MDP), i.e., an effi-
cient mathematical tool for uncertainty modelling in the surrounding current state, future evo-
lution and interactive behaviour with the agent. The maximization of an expected cumulative
reward function represents the interaction process between the agent and the environment,
with the aim of optimizing the agent behaviour via a learning-by-doing process. Namely,
the environment reactions are iteratively evaluated for determining the next optimal action
for the agent to perform. Specifically, on the basis of the qualitative analysis conducted in
RAILS Deliverable 2.2 [5], an actor-critic method, known as DDPG, originally proposed in
[44], is exploited. It is a model-free, off-policy and actor-critic approach that extends the
fast learning convergence properties of the Deep Quality Network (DQN) to the continuous
space while taking advantage from the Deep Policy Gradient (DPG) method [45].
In the VC context, DDPG agent i, ∀i = 1, 2, · · · , N , computes the control action ui(t) to
be imposed according to the environment reactions. Each agent is composed of 4 fully-
connected Deep Neural Networks (DNN), that is, actor, actor target, critic and critic target,
as shown in Fig. 5.2. Here, the actors compute the action at to be performed by each consist
i, while the critics evaluate, at each time state, the quality of the chosen action, according to
the learning-by-doing process.
For each agent i, the observation vector st ∈ R6 is defined as the set of the i-th measured

on-board train state information, i.e., xi(t) = [pi(t), vi(t)]
T ∈ R2, and the networked informa-

tion coming from the active T2T communication links, i.e., xi−1(t) = [pi−1(t), vi−1(t)]
T ∈ R2

and x0(t) = [p0(t), v0(t)]
T ∈ R2. The action space at ∈ R represents the set of the possible

GA 881782 Page 53 | 74

Fig. 5.2. DDPG control architecture for the computation of the control action ui(t), ∀i.

values assumed by the control action ui(t) ∈ R. Hence, at each time instant, the i-th agent,
interacting with the environment and based on the past and present observations state st,
computes and performs the chosen action at, which influences the next state transition of
the system, i.e., from st to st+1; then, the agent receives the new state st+1 and the scalar
reward rt = f(st, at).
As discussed in RAILS Deliverable 2.2 [5], the design of the reward function is a crucial
issue in the definition of the DDPG control strategy, as it has to be properly defined in order
to fulfill the main VCTS objectives, namely, increasing line capacity while mantaining a safe
inter-distance among trains, according to the RBD paradigm. Therefore, a proper safe inter-
train distance has been defined in Section 5.2.2, and is exploited for the evaluation of the
reward function, which is defined as follows for each agent i:

rt(st, at) = −w1 ∥vi(t)− vi−1(t)∥2−w1 ∥vi(t)− v0(t)∥2−w2 ∥pi(t)−pi−1(t)−ds,i(t)∥2−α(t) Ps,
(5.11)

where w1, w2 are positive weighting factors; Ps defines a penalty factor weighted by the
Boolean variable α(t), which is set to 1 when the relative distance between consist i and
the train ahead i− 1 exceeds the security distance, i.e. pi(t)− pi−1(t) < ds,i(t); 0 otherwise.
In this way, the i-th agent is rewarded if consist i reaches the speed of consist i − 1 and 0
without exceeding the relative security distance ds,i(t), while it is penalized when dangerous
actions are imposed on the i-th train motion. Note that, the quadratic terms in (5.11) can
bound the overshoot and the undershoot of the train motion.
Based on the values of the reward function, since the space st is fully-observed, the i-th
agent computes the following discounted cumulative reward:

Rt =
t∑

k=T

γ(k−t) rt(sk, ak), (5.12)

being T the first time-step already stored into the experience reply buffer at the time step
t. Note that the expected return depends both on the observation state and the undertaken
action at.
The control input ui(t) is, hence, selected by the actor-network via iterative steps. These

GA 881782 Page 54 | 74

also involve the critic, the target networks and the predictions of the correct behaviour to be
imposed with the aim of maximizing the cumulative reward function (5.12), i.e.:

ui(t) = at = µ(st|θµ) + ηt, (5.13)

where µ(st) is the actor-state policy mapping sequence, with actor-network weights θµ; ηt
represents the exploration noise modelled as, e.g., White Noise or Ornstein-Uhlenbeck pro-
cess and is introduced only for the DDPG training purpose. The chosen action ui(t), de-
pending on the ε− greedy method [44], is computed through a Q-value function estimation,
which in the optimal case is defined as

Q⋆(st, at) = max
µ

E
[
Rt | st, at, µ

]
. (5.14)

This estimation, carried out by the critic-networks, is exploited to update θµ at each time step,
according to the following gradient-descent equation:

θµ ← α
[
∇µ Q(st, µθ(st|θµ)) ∇θµ µ(st|θµ)

]
, (5.15)

where Q(st, µ(st|θµ)) is the action-state Q-function, i.e., the critic-network policy mapping
sequence, with weights θQ. Similarly, θQ are updated such that the following Mean-Squared
Bellman Error function [46] is minimised:

L(θQ) = Eµ(st),st

[(
Q(st, µ(st|θµ)|θQ)− (rt + γQ(st+1, µ(st+1|ϕµ)|ϕQ))

)2]
, (5.16)

being st+1 the prediction of future observations, while µ(st+1|ϕµ) is the related future action
to be undertaken. Hence, the next Q-value, namely Q(st+1, µ(st+1|ϕµ)|ϕQ), is evaluated via
the exploitation of both the target actor and critic-networks. The weights of the target critic
and target actor, i.e. ϕµ and ϕQ, are then computed according to the soft update fashion [47]
as:

ϕµ ← τ ϕµ + (1− τ)θµ, (5.17)
ϕQ ← τ ϕQ + (1− τ)θQ, (5.18)

with τ ≪ 1 being the updating probability. In this way, the target network values are con-
strained to change slowly, hence improving the convergence stability property. Algorithm (1)
summarizes the design stage of the DRL VC robust control ui(t).

5.2.4.1. Neural Network Structures

The Neural Networks (NNs) involved in the DDPG control strategy are exploited to model
the actor, the critic and their respectively target NNs. Their structure are defined in terms
of Activation Functions (AFs), numbers of layers χ and neurons λz,r, ∀ z = 1, · · · , χ with
r = 1, · · · ,Λz, being Λz the number of neurons for the z-th layer. The structural parameters
χ and Λz are selected considering a trade-off between performance and limited computa-
tional burden required at the on-board train controller device. The related target NNs are
characterised by the same structure as the main ones.
The architecture of the critic NN, depicted in Fig. 5.3(a), is composed of χ = 9 layers, char-

acterized by two different input paths and one output path, namely: i) the state-path takes in

GA 881782 Page 55 | 74

Algorithm 1: DDPG algorithm
Initialization
Randomly initialize critic-network Q(st, at|θQ) and actor-network µ(st|θµ) with weights θQ
and θµ.

Randomly initialize target networks Qtarg(st, at|ϕQ) and µtarg(st|ϕµ) with weights ϕQ and
ϕµ.

Define the DNNs Hyper-Parameters.
Computation
for episode = 1 to Nepisode do

s0 ← Reset Environment
while tk = 1 to Tsteps or !done do

if random value ≤ ϵ then
at ← random action

else
at = µ(st|θµ) + ηt

end
st+1, rt ← StepEnvironment(at)
Store tuple (st, at, rt, st+1)
Sample mini-batch Mbatch from replay memory
Compute targets
if doTraining then

Update actor NN according to (5.15) and critic NN by gradient descent of
(5.16)

Update target networks with soft-update (5.17), (5.18)
end

end
end

input the 6 observations, i.e. st, for the Q-value estimation and it is composed of 1 normal-
ized Input layer and 4 fully-connected Dense layers, i.e., 2, 3, 4, 5; ii) the action-path maps
the relation between the chosen action at and the Q-value, and is composed of 1 normalized
Input layer and 1 Dense layer; iii) the output path is composed of 2 layers, where the former,
i.e., the 8th Connection layer, aims at connecting the two input paths merging their informa-
tion to estimate the Q-value. The number of neurons Λz for the two Normalized Input layers,
related to the state-path and action-path, are equal to the number of the respective inputs,
i.e. Λ1 = 6 and Λ6 = 1, respectively. The number of neurons related to 9th Output layer,
instead, is equal to the number of output, i.e. Λ9 = 1. Moreover, the number of neurons for
Dense layers is equal to:

Λj = 28−j ∀j = 1, · · · ,D, (5.19)

where D = {2, 3, 4, 5, 6, 7, 8} is the subset indexes of layers χ associated to Dense layers.
Therefore, while the first Dense layer, i.e., 2nd Dense layer, is characterized by Λ2 = 256, the
neurons number for the others j ∈ D decreases as a power function. Finally, as AFs, we
select the Rectified Linear Units (RELU) one for the first χ − 1 layers and the linear one for
the layer χ = 9. Critics NN features are summarised in Table 5.2(a).
The actor NN, reported in Fig. 5.3(b), is composed of 1 Normalized Input layer, 4 Dense lay-

GA 881782 Page 56 | 74

(a) (b)

Fig. 5.3. DDPG Neural Networks structure: (a) Critic Neural Networks; (b) Actor Neural
Networks.

ers and one single Output layer, for a total of χ = 6 layers. The normalized Input layer takes
as input the observation vector st and, hence, accounted for 6 neurons. The first Dense
Layer is composed of 256 neurons, while the remaining dense layers present a number of
neurons according to (5.19). Moreover, the Output Layer includes only one neuron. Finally,
as AFs, we select the Rectified Linear Units (RELU) one for the first χ − 1 layers and a hy-
perbolic tangent (tanh) for the Output layer to let the actor NN compute at while constraining
it in the range [−1, 1]. Actors NN features are summarised in Table 5.2(b).

5.2.4.2. Exploration Strategy

The exploration strategy is crucial for the design of the actor/critic NNs since it guarantees
the optimization of the reward function during the agent training phase. Namely, it allows
the agent to explore the unknown surrounding environment. To this aim, the approach first
considers the introduction of the exploration noise, here modelled as an Ornstein-Uhlenbeck
process [48], i.e.:

η̇(t) = −β η(t) + δ N (t) (5.20)

where β and δ are positive parameters, whileN (t) is a White Noise process with mean equal
to zero and standard deviation equal to 0.10. Note that the exploration noise acts at each
time-step.
Then, we leverage the ε-greedy method to improve the agent training performance. Specif-
ically, at each time-step, it generates a random value ρt and compares this latter with the
threshold evaluated for the current training episode, i.e., εepisode. If ρt is within the exploration
area (ρt ≤ εepisode), the agent chooses at time-step t a random action at. Conversely, if ρt
is inside the exploitation area (ρt > εepisode), the agent chooses the action as in (5.13). The
dynamics of εepisode along all the appraised episodes number Nepisode are described with the

GA 881782 Page 57 | 74

Table 5.2: DDPG Architecture
(a) Critic Neural Network Structure

State-Path
zth-Layers Λz Activation function

1st-Normalized Input layer 6 RELU
2nd-Dense layer dims 256 RELU
3th-Dense layer dims 128 RELU
4th-Dense layer dims 64 RELU
5th-Dense layer dims 32 RELU

Action-Path
zth-Layers Λz Activation function

6th-Normalized Input layer 1 RELU
7th-Dense layer dims 256 RELU

Output-Path
zth-Layers Λz Activation function

8th-Connection Layer 16 RELU
9th-Output Layer 1 Linear

(b) Actor Neural Network Structure
zth-Layers Λz Activation function

1st-Normalized Input layer 6 RELU
2nd-Dense layer dims 256 RELU
3th-Dense layer dims 128 RELU
4th-Dense layer dims 64 RELU
5th-Dense layer dims 32 RELU
6th-Output layer dims 1 tanh

exponential ε-greedy method, i.e.:

εepisode+1 = εepisode e
εd + εf , (5.21)

where εf is the minimum exploration value for episode → Nepisode; εd is the decay rate of the
ε-greedy law. The initial value for εepisode is set to ε0 = 1.

5.3. Dataset Generation

Another critical issue highlighted in RAILS Deliverable 2.2 [5], strictly related to the training
and validation phases of the DDPG controller, is represented by the need of advanced sim-
ulation platforms [49], since any dataset would be inadequate to work in high-dimensional
and continuous action spaces. Therefore, we propose an ad-hoc VCTS simulation platform
for the DDPG control design and validation purposes.
The VCTS simulator is implemented by leveraging Python v3.9 and Conda interpreter, as well
as the combination of some open-source libraries, i.e. Keras, Tensorflow and OpenAiGym.

GA 881782 Page 58 | 74

This latter has been suitably adapted to emulate the functioning of the tactical layer enabling
trains VC, in addition to a basic logic for the emulation of the strategic layer. We remind that,
according to [36], the latter is in charge of defining the platoons, their composition and or-
dering, based on compatibility, destinations and schedules. It also defines when and where
the cooperative manoeuvres, such as coupling and decoupling, should occur.
The hardware requirements for the proposed simulation platform are a Nvidia-GPU to train
the DDPG agent and a generic CPU for the validation phase. Note that this kind of virtual
simulation is a cost-effective alternative for VCTS testing, since the Python language along
with the exploited libraries are open-source tools.
The key components of the proposed simulation platform are reported in Fig. 5.4 and are
detailed in the following:

Fig. 5.4. Overview of the proposed simulation platform

• Keras v2.8.0 is used for the definition and the building up of the DNN related to the
actor, critic and the corresponding target networks;

• Tensorflow v2.8.0 allows the computation of the Gradient Descent formula in (5.15)
and the Mean-Squared Bellman error in (5.16) via the Adam optimizer;

• OpenAiGym v0.23 is properly enlarged with the libraries related to train dynamics,
communication network and strategic control layer logic, in order to simulate the VCTS
paradigm environment.

Specifically, Keras and Tensorflow implement the designed DDPG tactical layer reported in
Section 5.2.4. The OpenAiGym, instead, emulates: i) the heterogeneous nonlinear dynamic
model of the trains as in (5.1)-(5.2) together with the time-varying parameters uncertainties
arising from the different operating driving conditions and train heterogeneity [50,51]; ii) the
T2T communication networks among the trains as well as the T2I communications, both for
trains-RBC which enable information sharing with the uncertainties affecting the train loca-

GA 881782 Page 59 | 74

tion information, and for the on-board sensors measurements errors (see Remark 1); iii) the
strategic layer logic responsible for the coupling/decoupling conditions and commands [37];
iv) the railway environment, the induced uncertainties and the nonlinearities effects consid-
ering the different values assumed by the adhesion factor for different weather conditions
[52], several curvature radii and gradient profiles according to the European railway lines 1,
different windy conditions [39,53,54].

5.4. Training and Validation

The simulation platform designed in Section 5.3 has a twofold task: 1) the training of the
designed DDPG agent; 2) the validation of the proposed VCTS tactical layer controller. Thus,
based on the specific usage, selected via the main file, only some libraries of the platform
are invoked. In the following, both the training and validation phases are detailed.

5.4.1. DDPG Agent Training

The training phase requires the initialization of the hyper-parameters setup and the random
generation of the model parameters, of the driving scenarios (i.e. initial conditions of the
preceding and the follower train), as well as the unknown surrounding railway nonlinearities.
Specifically, the train dynamical control-oriented model in (5.1) is discretized via a sampling
time of Tc = 0.1[s] and integrated with a Trapezoidal-Euler algorithm. Moreover, the selected
hyper-parameters are reported in Table 5.3, while the training horizon is set to Nepisode = 5000
with an iteration step, for each episode, of Nsteps = 10000, corresponding to a simulation time
of Ts = 1000 [s]. Note that, Nsteps could be shorter if some special conditions, indicated via
the flag done in Algorithm (1) occur, i.e., a possible collision among trains or a negative value
for trains speed.
As to the training scenario, for each train i we consider: i) the preceding i− 1 and the virtual
leader move according to time-varying speed profile with values raging into [20; 83] [m/s];
ii) the initial value for the inter-train distance between train i and i − 1, i.e. pi(0) − pi−1(0),
varies every 25 episodes into the range [250; 1000] [m]; iii) the parameters of the i-th train
randomly vary every 50 episodes within the range [0; 20]% of the nominal values; iv) the
acceleration component of the external force due to the unknown railway nonlinearities ωi(t)
is assumed to be constant over an episode and varying into the range [−0.9, 0.9] [m/s2]
every 10 episodes. Furthermore, the reward function parameters in (5.11) are selected as:
w1 = 0.8, w2 = 0.6 and Ps = 1000.

The training process is performed via Intel ® CoreTM i7-11900K 3.2 GHz, 64 GB 4.400
MHz DDR5 of RAM memory, GPU NVIDIA ® GeForce RTXTM 3080 (with 16 GB GDDR6
of memory) and Windows 11 system by exploiting the designed VCTS platform detailed
in Section 5.3. More in detail, Tensorflow computes the new weights of the DNNs, while
Keras receives them and, based on the last observation vector, computes a new action to
be imposed to the train i. Accordingly, this action is shared with OpenAiGym, which updates
the kinematic train information for the next iterative step.
The effectiveness of the training results are shown in Fig. 5.5, where the trend of the reward
function goes towards zero over the epochs, hence confirming that the DDPG agent has
learned the correct behaviour to be imposed to train i by doing.

1https://unece.org/DAM/trans/main/ter/terdocs/TER_High-Speed_Master_Plan_Study
.pdf

GA 881782 Page 60 | 74

https://unece.org/DAM/trans/main/ter/terdocs/TER_High-Speed_Master_Plan_Study.pdf
https://unece.org/DAM/trans/main/ter/terdocs/TER_High-Speed_Master_Plan_Study.pdf

Table 5.3: DDPG hyper-parameters setup
Parameter Value Parameter Value

Replay buffer size 100.000 Batch size 64
Delay steps for training 1024 Update step 64

Discount factor γ 0.99 Smooth factor τ 0.001
Epsilon starting value ϵ 0.99 Epsilon final value ϵf 0.05

Critic learning-rate 0.001 Actor learning-rate 0.0002
Ornstein Uhlenbeck mean 0.5 Ornstein Uhlenbeck divergence 0.6

Fig. 5.5. Performance results about the training phase of the DDPG agent. Trend of the
reward function over the 5000 epochs: the blue line are the average normalized episode
reward while the shaded blue area is the variance of the reward function over the 1000

simulation-steps.

5.4.2. Validation of the VCTS Controller

The validation phase is carried out to show the effectiveness of the proposed DDPG tactical
layer controller in guaranteeing the VC for HST convoys. To do this, concrete operational
scenarios involving a combination of manoeuvres, as suggested by Shift2Rail [55] and [38,
56], are considered. They are defined in terms of: number of trains composing the VCTS;
model and braking characteristics of the consists, i.e., the train parameters; initialization of
the trains positions and speeds; the strategic logic commanding the specific cooperative
manoeuvres to be performed; the selection of the travelling route and of the weather/windy
conditions.
Specifically, in each scenario we consider a VCTS composed of 4 HSTs plus the RBC acting
as a virtual leader. Each train i (i = 1, · · · , 4) communicates with the preceding vehicle i− 1
via the T2T communication network and with the RBC via the T2I paradigm, as depicted in
Fig. 5.1.
The uncertain parameters for each train i are selected according to [57], with nominal value
reported in Table 5.4 along with their respective uncertain variation ranges.
In order to evaluate the flexibility/robustness of the proposed controller w.r.t. these unknown

uncertain parameters, as well as all the possible combinations of them, the Monte Carlo
method is exploited. This allows to achieve a broad test coverage by varying a large number

GA 881782 Page 61 | 74

Table 5.4: Dynamics train parameters for the validation analysis
Parameter Value Ranges

M̄i [t] M̄1 = 475 M̄2 = 489 M̄3 = 496 M̄4 = 502 ±30%
C̄1,i [kg m/s2] C̄3,1 = 0.8420 C̄3,2 = 0.7314 C̄3,3 = 0.6852 C̄3,4 = 0.7862 ±20%
C̄2,i [kg/s] C̄2,1 = 0.00681 C̄2,2 = 0.00613 C̄2,3 = 0.00708 C̄2,4 = 0.00662 ±20%
C̄3,i [kg/m] C̄1,1 = 000209 C̄1,2 = 000105 C̄1,3 = 000149 C̄1,4 = 000187 ±20%

of parameters values in a wide range, which is commonly not possible, easy, or cost-efficient
in test field experiments (e.g., due to the limited number of vehicles usually involved in the
experiments and with specific characteristics and mechanical features).
The train unknown dynamic nonlinearities ωi(t), given the friction force and the external
disturbances, are modelled as [41]:

ωi(t) = ag(t) + aR(t) + aW (t), (5.22)

with

ag(t) = −µ(t)g × slope(t), (5.23a)

aR(t) = −
6 · 106

R(t)
, (5.23b)

aW (t) ∈ L2. (5.23c)

ag(t) [m/s2] in (5.23a) is the acceleration component of the friction force, where µ(t) = 0.25
is the railway line adhesion coefficient in dry conditions, g [m/s2] is the gravity acceleration
while slope(t) [mm/m] is the gradient profile. aR(t) [m/s2] in (5.23b) is the acceleration curv-
ing component where R(t) [m] is the curvature radius. aW (t) [m/s2] is the resistance wind
acceleration component. The value of slope(t) and R(t) are based on the Italian railway lines
characteristics 2. The safe inter-train distance between consecutive vehicles is modelled as
in (5.6) with braking capability parameters, ∀i as in Table 5.5. Without loss of generality, we
assume for each train the same power-train system, i.e., the same braking performance.
As already pointed out, the validation process is performed exploiting the designed VCTS
platform detailed in Section 5.3. Precisely, the data-flow enabling the validation phase in-
volves just Keras and OpenAiGym, since the updating process of the DNNs via Tensorflow
is not required. Thus, OpenAiGym emulates the selected driving scenario, while Keras com-
putes the optimal action to be performed by the trained model.

2https://www.gazzettaufficiale.it/atto/serie_generale/caricaArticolo?art.progre
ssivo=0&art.idArticolo=17&art.versione=1&art.codiceRedazionale=089G0159&art.da
taPubblicazioneGazzetta=1989-04-24&art.idGruppo=0&art.idSottoArticolo1=10&art
.idSottoArticolo=1&art.flagTipoArticolo=2

GA 881782 Page 62 | 74

https://www.gazzettaufficiale.it/atto/serie_generale/caricaArticolo?art.progressivo=0&art.idArticolo=17&art.versione=1&art.codiceRedazionale=089G0159&art.dataPubblicazioneGazzetta=1989-04-24&art.idGruppo=0&art.idSottoArticolo1=10&art.idSottoArticolo=1&art.flagTipoArticolo=2
https://www.gazzettaufficiale.it/atto/serie_generale/caricaArticolo?art.progressivo=0&art.idArticolo=17&art.versione=1&art.codiceRedazionale=089G0159&art.dataPubblicazioneGazzetta=1989-04-24&art.idGruppo=0&art.idSottoArticolo1=10&art.idSottoArticolo=1&art.flagTipoArticolo=2
https://www.gazzettaufficiale.it/atto/serie_generale/caricaArticolo?art.progressivo=0&art.idArticolo=17&art.versione=1&art.codiceRedazionale=089G0159&art.dataPubblicazioneGazzetta=1989-04-24&art.idGruppo=0&art.idSottoArticolo1=10&art.idSottoArticolo=1&art.flagTipoArticolo=2
https://www.gazzettaufficiale.it/atto/serie_generale/caricaArticolo?art.progressivo=0&art.idArticolo=17&art.versione=1&art.codiceRedazionale=089G0159&art.dataPubblicazioneGazzetta=1989-04-24&art.idGruppo=0&art.idSottoArticolo1=10&art.idSottoArticolo=1&art.flagTipoArticolo=2

Table 5.5: Train braking performance

Parameters Value Parameters Value Parameters Value
vmax,i [m/s] 85 tb,i [s] 0.3 tbu,i [s] 1

ab,i [m/s2] 0.9 tc,i [s] 0.2 ±es,i [m] ±0.5
ad,i [m/s2] 1 are,i [m/s2] 0.15 sm [m] 15

abs,i [m/s2] 0.6 te,i [s] 1 ves,i [m/s] ±3.6

5.5. Evaluation of Results

In what follows, we consider three specific operational scenarios, defined as in Section
5.4.2, which involve the following cooperative manoeuvres: i) VCTS Forming; ii) VCTS
Splitting; iii) Leader-Tracking. Each of them is constructed by combining the basic cou-
pling/decoupling for the VCTS (properly described in the technical report [55]), with the aim
of emulating joining and leaving operations. It is worth noting that, with the aim of assessing
the correct functioning of every single DDPG controller i, the coupling/decoupling operation
i)/ii) is emulated such that each train i joins/leaves the forming/formed convoy at a different
time instant. The strategic layer is emulated via a set of coupling/decoupling commands,
along with the definition of the number of trains belonging to the VCTS and their position
indexes within the platoon, which are defined based on the logic rules as in [38].
The virtual testing results in each operational scenario are discussed in the following.

5.5.1. Operational Scenario 1: VCTS Forming

In this driving scenario, each consist travels on different secondary railway lanes with a
proper cruising speed until reaching the relative switching point merging these lanes towards
the primary railway one, where the 4 HSTs have to move in a VCTS.
We assume that the consists start from different initial positions on their own railway lanes,
i.e., p1(0) = 1800 [m], p2(0) = 1200 [m], p3(0) = 600 [m], p4(0) = 0 [m], with a different cruising
speeds, i.e., v1(0) = 83.8 [m/s], v2(0) = 85 [m/s], v3(0) = 86.3 [m/s], v4(0) = 87.6 [m/s], until
reaching the primary lane, where the VC can be enabled. The RBC is located on the primary
lane and imposes the reference behaviour according to (5.4)-(5.5) with the following initial
conditions: p0(0) = 2400 [m] and v0(0) = 75.0 [m/s]. Note that, under the management of the
signalling system, the switching towards the primary railway lane occurs without collisions
[38]. At this lane, each consist moves at its cruising until the coupling condition w.r.t. the
preceding train is verified. Now, the emulated strategic layer sends the coupling command
to the i-th train at the instant time t̃coupling,i [s] and the virtual leader imposes the reference
speed of 75.0 [m/s] to the i-th train.
Virtual simulation results are reported in Fig. 5.6. Based on the trains initial conditions,
the coupling command occurs for each train i at t̃coupling,1 ≈ 200 [s], t̃coupling,2 ≈ 350 [s],
t̃coupling,3 ≈ 450 [s], t̃coupling,4 ≈ 550 [s], respectively. Accordingly, Fig. 5.6(a)-(b) disclose
the effectiveness and the robustness of the proposed DDPG control in guaranteeing the
VC of each train i w.r.t. its predecessor at the time instant t̃coupling,i while maintaining a
safe inter-train distance ep,i(t) (see Fig. 5.6(c))- with bounded speed error ev,i(t) (see Fig.
5.6(d))- despite presence of unknown uncertainties and nonlinearities. Fig. 5.6(a)-(b)-(c)-
(d)-(e) are obtained by leveraging the Monte Carlo method for the unknown time-varying train

GA 881782 Page 63 | 74

parameters with nominal values and range variations reported in Table 5.4. As it is possible
to observe in Fig. 5.6(e), for each time-varying parameters combination, the DDPG provides
a suitable trend for the control effort to be imposed on the i-th HST in order to guarantee
the manoeuvre task accomplishment according to the VCTS control objectives (5.9)-(5.10)
(as also highlighted in Fig. 5.6(a)-(b)-(c)-(d)), hence confirming the ability of the proposed
control technique in counteracting the unknown factors. To better show the feasibility of the
imposed control action, we report in Fig. 5.6(f) the traction force trend for the nominal value
of train parameters as listed in Table 5.4.

(a) (b) (c)

(d) (e)

200 300 400 500 600 700

1.8

1.9

2

2.1

2.2

2.3

2.4
10

5

(f)

Fig. 5.6. Performance of the DDPG tactical layer robust control. VCTS Forming operational
scenario. Time history of: (a) train position pi (i = 1, · · · , 4) plus virtual leader position p0(t);

(b) train speed vi(t) (i = 1, · · · , 4) plus virtual leader speed v0(t); (c) position errors
computed as pi−1(t)− pi(t) (i = 1, · · · , 4); (d) speed errors computed as v0(t)− vi(t)

(i = 1, · · · , 4); (e) various train traction input force curves ui(t) (i = 1, · · · , 4); (f) train traction
input force ui(t) (i = 1, · · · , 4) in the nominal parameters case, as listed in Table 5.4.

5.5.2. Operational Scenario 2: VCTS Splitting

Here, the HSTs travel in VC formation on a primary railway lane at the cruising speed of
83 [m/s] (and with safe inter-train distance ds,i(t)) until reaching several diverging junction
points. Note that, in this case, for each decoupling train, the safety distance explicitly takes
into account the absolute braking distance with respect to the related diverging junction point
via dlim,i−1 in (5.8), computed according to the imposed track constraints. The consists split
the primary railway section into 4 secondary lanes, where the 4 HSTs move according to
the proper journey profile. Specifically, the manoeuvre is composed of a combination of 4
sequential decoupling operations, starting from the vehicle in tail according to the strategic
layer logic. Once the leaving request is accepted, the leave command is sent to the i-th train
at time instant t̃decoupling,i [s].

GA 881782 Page 64 | 74

Virtual simulation results are reported in Fig. 5.7, where it is possible appreciating the effec-
tiveness of the DDPG control in performing the split manoeuvre in uncertain and unknown
conditions. Indeed, when the first decoupling command is sent at t̃decoupling,4 = 500 [s], train 4
leaves the convoy, switches on its own secondary lane and decreases its speed to 73 [m/s]
(see Fig. 5.7(b)). Likewise, train 3 leaves the formation at time t̃decoupling,3 = 600 [s] and
approaches the new cruising speed of 76 [m/s], then followed by the 2-nd and 1-st train
which exit the convoy (at t̃decoupling,2 = 700 [s] and t̃decoupling,1 = 800 [s]) and travel at their
new constant speeds of v2 = 80 [m/s] and v1 = 83.8 [m/s], respectively (see Fig. 5.7(b)).
In Fig. 5.7 (a), the reported train positions reflect the aforementioned events. The ability of
DDPG control in performing the manoeuvre is further shown in Fig. 5.7 (c)-(d), where the
time-histories of the relative position of each train w.r.t. its predecessor, as well as speed
errors w.r.t. the leader, are provided. Since the robustness of the DDPG control strategy
is evaluated via Monte Carlo method, we report all the suitable trends for the traction force
in each uncertain case in Fig. 5.7 (e), while Fig. 5.7 (f) reports a single realization of the
control inputs, obtained according to the nominal model parameters listed in Table 5.4.

(a) (b) (c)

(d) (e)

450 500 550 600 650 700 750 800 850 900 950

1.8

1.9

2

2.1

2.2

2.3

2.4
10

5

(f)

Fig. 5.7. Performance of the DDPG-based tactical layer robust control. VCTS splitting
operational scenario. Time history of: (a) train position pi (i = 1, · · · , 4) plus virtual leader

position p0(t); (b) train speed vi(t) (i = 1, · · · , 4) plus virtual leader speed v0(t); (c) position
errors computed as pi−1(t)− pi(t) (i = 1, · · · , 4); (d) speed errors computed as v0(t)− vi(t)
(i = 1, · · · , 4); (e) various train traction input force curves ui(t) (i = 1, · · · , 4); (f) train traction

input force ui(t) (i = 1, · · · , 4) in the nominal parameters case, as listed in Table 5.4.

5.5.3. Operational Scenario 3: Leader Tracking

In this operational scenario, we consider that the 4 HSTs travel in formation on the primary
lane, with a constant speed of 85 [m/s] while maintaining a safe inter-train distance (whose
initial condition is of ds,i(t) = 339 [m]), when the leader imposes a trapezoidal speed ma-

GA 881782 Page 65 | 74

noeuvre, consisting of a succession of acceleration and deceleration phases. Specifically, at
the time instant t = 400 [s], the leader accelerates until reaching the new constant speed of
88 [m/s]; then, at time instant t = 850 [s], a braking manoeuvre is performed until achieving
again the initial constant speed of 85 [m/s]. The effectiveness of the proposed DDPG control
strategy in ensuring the leader tracking with a safe inter-train distance ds,i(t) (see (5.6)) is
shown in Fig. 5.8: each train tracks the trapezoidal speed profile v0(t) (see Fig. 5.8(b)),
while maintaining the safe inter-train distance (see Fig. 5.8(a)-(c)) with bounded and very
small speed tracking errors (see Fig. 5.8(d)). The suitable trends computed by the DDPG
controller via the Monte Carlo method for counteracting the different uncertain cases are
disclosed in Fig. 5.8 (e), while Fig. 5.8 (f) depicts the realization of the control inputs when
considering trains nominal parameters as defined in Table 5.4.

(a) (b) (c)

(d) (e)

300 400 500 600 700 800 900

2.32

2.33

2.34

2.35

2.36

2.37

2.38

2.39

2.4

2.41
10

5

(f)

Fig. 5.8. Performance of the DDPG tactical layer robust control. Leader Tracking
operational scenario. Time history of: (a) train position pi(t) (i = 1, · · · , 4) plus virtual leader
position p0(t); (b) train speed vi(t) (i = 1, · · · , 4) plus virtual leader speed v0(t); (c) position
errors computed as p0(t)− pi(t) (i = 1, · · · , 4); (d) speed errors computed as v0(t)− vi(t)

(i = 1, · · · , 4); (e) various train traction input force curves ui(t) (i = 1, · · · , 4); (f) train traction
input force ui(t) (i = 1, · · · , 4) in the nominal parameters case, as listed in Table 5.4.

5.6. Discussion of Results

In the previous sections, the effectiveness of the proposed model-free DRL control strategy
to guarantee the achievement of the VC requirements and the fulfillment of the manoeuvres
tasks in different operational scenarios, as well as the robustness w.r.t. unknown factors,
has been shown through the validation phase. However, a question arises: what are the
benefits of using a DRL method with respect to traditional model-based approaches, which
are already assessed for the implementation of vehicle VC in the automotive field?

GA 881782 Page 66 | 74

To answer the question, we carry out a comparison analysis between the performance of
the DDPG controller and the one achievable via the optimized Model Predictive Control
(MPC) strategy recently proposed in [57] considering the Leader Tracking scenario detailed
in Section 5.5.3, in which gradients and slopes are disregarded. The comparison between
the two approaches is carried out by leveraging the simulation platform deeply analyzed in
Section 5.3, and is assessed via two suitable KPIs suggested in RAILS Deliverable 2.2 [5]
(see Table 5.1). In particular, we exploit the Tracking Index (TI) [58], which is based on the
tracking error (KPI4), and the Energy Consumption (EC) [34], corresponding to KPI5. We
highlight that other KPIs as well as other operational scenarios can be considered for the
comparison, since the selected ones are meant to be a benchmark for future research.
The TIi weights the tracking error for each vehicle i (∀i = 1, · · · , 4) as:

TIi =
1

Ti

∫ Ti

0

∣∣∣∣ SDE · ep,i−1,i(t) + SV E · ev,0,i(t)
∣∣∣∣ dt (5.24)

where Ti = 450 [s] is the traveling time to perform the trapezoidal manoeuvre; SDE and SV E
are positive weights that represent the sensitivity to the distance and the velocity error, which
are set, according to [58], as SDE = 1 and SV E = 10; ep,i−1,i(t) = pi−1(t)− pi(t)− ds,i(t) [m]
and ev,0,i(t) = v0(t)− vi(t) [m/s] are the position and the speed error, respectively.
Instead, the ECi index for each consist i within the VCTS is computed as:

ECi =
1

dpi

∫ Ti

0

vi(t) · ui(t) dt, (5.25)

being dpi ≈ 17 [km] the distance travelled by train i during the manoeuvre, while ui [N] is the
friction force required at the vehicle for travelling at the speed vi(t) [m/s2].
Comparative results in Fig. 5.9(a) confirm the good tracking performance achievable via
the proposed DDPG approach. Namely, the following variations in mean and standard de-
viation of the proposed approach and the MPC, respectively, can be appreciated: −70.32%
and −65.22% for train 1; 0.65% and −3.84% for train 2; −17.72% and −36.68% for train 3;
−16.43% and −14.29% for train 4. The TI results of each train computed for the two con-
sidered control strategies are summarised in Table 5.6. These results clearly indicate that
the developed model-free controller better guarantees the reference tracking performance
in the mean. Furthermore, the standard deviation reduction in the output distribution proves
that the proposed approach is less sensitive to parameter uncertainties, differently from the
model-based one which suffers from this issue.

The improvement in tracking performance, as well as the robustness property of the ap-
proach, also involves the train consumption; in this regard, comparative results w.r.t. MPC
clearly disclose the efficiency of the DDPG tactical layer in energy saving, as depicted in
Fig. 5.9(b). Specifically, the following variations in mean and standard deviation between
DDPG and MPC, respectively, are obtained: −12.16% and −8.48% for train 1; −12.45% and
−10.15% for train 2; −11.98% and −4.17% for train 3; −12.21% and −5.28% for train 4. The
EC results of each train computed for the two considered control strategies are summarised
in Table 5.7. It is worth highlighting that this energy saving is exactly due to the ability of
the DDPG controller in counteracting different uncertainties factors and in guaranteeing the
proper leader tracking in different driving conditions.
This experimental proof-of-concept has been proposed to give an answer to the research

GA 881782 Page 67 | 74

Tracking Index Control Strategy Train 1 Train 2 Train 3 Train 4

Mean
DDPG 0.1662 0.5608 0.4560 0.4607

MPC 0.5601 0.5571 0.5542 0.5513

Variation (%) −70.32 0.65 −17.72 −16.43

Standard Deviation
DDPG 0.1186 0.3269 0.2145 0.2892

MPC 0.3411 0.3399 0.3387 0.3375

Variation (%) −65.22 −3.84 −36.68 −14.29

Table 5.6: Tracking Index mean and standard deviation of each train i (i = 1, . . . , 4) for
DDPG and MPC control strategies, including variations between DDPG and MPC results,

respectively.

Energy Consumption Control Strategy Train 1 Train 2 Train 3 Train 4

Mean
DDPG 0.0776 0.0769 0.0769 0.0763

MPC 0.0883 0.0878 0.0873 0.0869

Variation (%) −12.16 −12.45 −11.98 −12.21

Standard Deviation
DDPG 0.0073 0.0067 0.0067 0.0062

MPC 0.0079 0.0074 0.0070 0.0065

Variation (%) −8.48 −10.15 −4.17 −5.28

Table 5.7: Energy Consumption [kWh/km] mean and standard deviation of each train i
(i = 1, . . . , 4) for DDPG and MPC control strategies, including variations between DDPG

and MPC results, respectively.

questions (see Section 5.1) arisen from the methodological analysis proposed in Deliverable
D2.2 [5]. Results confirmed that the proposed approach, which leverages AI tools transferred
from vehicle platooning (RQ1), could represent a valuable solution for the development of the
tactical layer functionalities in the field of railway VC. The validation phase, indeed, showed
the effectiveness of the approach in guaranteeing the tracking of the virtual leader reference
speed and the maintenance of safe inter-train distances in different operational scenarios,
despite the presence of uncertainties, nonlinearities, and disturbances due to train dynamics
and unknown railway environmental effects (RQ2). Furthermore, from the evidences of the
comparison analysis, it emerged that the proposed DRL control strategy could also provide
several advantages w.r.t. the considered model-based method, such as:

• capacity: it could allow better reference tracking performance on average, thus en-
hancing lane capacity, which represents one of the main objectives of the VC paradigm;

• flexibility: differently from model-based approaches, which require a detailed mod-
elling of the train dynamics and the surrounding environment, the DDPG controller is
a model-free approach able to adapt the trains behaviour to the encountered driving
scenarios, without any prior knowledge of the train dynamics and the travelling envi-
ronment;

• robustness: the proposed solution is robust to parameters uncertainties compared to
MPC, as it can better address trains heterogeneity, unknown and time-varying train dy-
namics, uncertainties and nonlinearities due to unknown track conditions and external

GA 881782 Page 68 | 74

disturbances;
• energy saving: the proposed DDPG tactical layer could substantially reduce energy

consumption, thus supporting energy saving.
In conclusion, this proof-of-concept allowed to investigate the possible adoption of AI tech-
niques transferred from other transportation sectors to railway VC; its promising preliminary
results can be considered a benchmark to inspire future developments towards the definition
of a technology roadmap (RQ3).

(a) (b)

Fig. 5.9. Comparison analysis w.r.t. the MPC control strategy proposed in [57]. Leader
Tracking operational scenario (see Section 5.5.3). (a): Tracking Index TIi (i = 1, · · · , 4); (b):

Energy Consumption ECi (i = 1, · · · , 4).

GA 881782 Page 69 | 74

6. Conclusions

In this deliverable, the potential of AI solutions towards a vision of safe automation and intel-
ligent train control in the railway sector has been investigated through experimental proofs-
of-concept. These last represents the continuation of the methodological analyses provided
in the previous deliverable for two selected case studies, namely, “Obstacle Detection for
Collision Avoidance”, and “Cooperative Driving for Virtual Coupling of Autonomous Trains”.
In accordance with the objectives, techniques, and research questions identified in the pre-
vious deliverable, for each case study, an innovative approach which exploits AI techniques
transferred from other transportation sectors has been provided. The effectiveness of the
proposed strategies has been evaluated via experimental validation in concrete operational
scenarios. Results showed that AI can represent a valuable solution for enhancing rail safety
and automation. These proofs-of-concept are meant to be a first step to inspire future devel-
opments and a technology roadmap. A detailed analysis of the results from each case study
to identify opportunities, gaps, strengths, and weaknesses will be indeed the main object of
the next deliverable.

GA 881782 Page 70 | 74

Bibliography

[1] F. Flammini, L. De Donato, A. Fantechi, and V. Vittorini, “A vision of intelligent train con-
trol,” Preprint submitted to International Conference on Reliability, Safety, and Security
of Railway Systems (RSSRail 2022), Lecture Notes in Computer Science, Springer,
2022.

[2] SMART, “Smart Automation of Rail Transport,” 2016-2019, http://smart.masfak.ni.ac.rs.
[3] SMART2, “Advanced integrated obstacle and track intrusion detection system for smart

automation of rail transport,” 2019-2022, https://smart2rail-project.net.
[4] D. Ristić-Durrant, M. Franke, and K. Michels, “A review of vision-based on-board ob-

stacle detection and distance estimation in railways,” Sensors, vol. 21, no. 10, p. 3452,
2021.

[5] RAILS, “Deliverable D2.2 – WP2 Report on AI approaches and models,” 2022.
[Online]. Available: https://rails-project.eu/downloads/deliverables

[6] L. De Donato, F. Flammini, S. Marrone, C. Mazzariello, R. Nardone, C. Sansone, and
V. Vittorini, “A survey on audio-video based defect detection through deep learning in
railway maintenance,” IEEE Access, pp. 1–1, 2022.

[7] RAILS, “Deliverable D1.2: Summary of existing relevant projects and state-of-the-art
of AI applications in railways,” 2021, DOI: 10.13140/RG.2.2.11353.03686. [Online].
Available: https://rails-project.eu/downloads/deliverables

[8] Y. Wang, L. Wang, Y. H. Hu, and J. Qiu, “Railnet: a segmentation network for railroad
detection,” IEEE Access, vol. 7, pp. 143 772–143 779, 2019.

[9] Z. Wang, X. Wu, G. Yu, and M. Li, “Efficient rail area detection using convolutional
neural network,” IEEE Access, vol. 6, pp. 77 656–77 664, 2018.

[10] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convolutional encoder-
decoder architecture for image segmentation,” 2015.

[11] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical
image segmentation,” in International Conference on Medical image computing and
computer-assisted intervention. Springer, 2015, pp. 234–241.

[12] Z.-Q. Zhao, P. Zheng, S.-T. Xu, and X. Wu, “Object detection with deep learning: A
review,” IEEE Transactions on Neural Networks and Learning Systems, vol. 30, no. 11,
pp. 3212–3232, 2019.

[13] Z. Zou, Z. Shi, Y. Guo, and J. Ye, “Object detection in 20 years: A survey,” 2019.
[14] D. Ristić-Durrant, M. A. Haseeb, M. Franke, M. Banić, M. Simonović, and D. Sta-

menković, “Artificial intelligence for obstacle detection in railways: project smart and
beyond,” in European Dependable Computing Conference. Springer, 2020, pp. 44–
55.

[15] A. Boussik, W. Ben-Messaoud, S. Niar, and A. Taleb-Ahmed, “Railway obstacle de-
tection using unsupervised learning: An exploratory study,” in 2021 IEEE Intelligent
Vehicles Symposium (IV), 2021, pp. 660–667.

[16] T. Ohgushi, K. Horiguchi, and M. Yamanaka, “Road obstacle detection method based

GA 881782 Page 71 | 74

http://smart.masfak.ni.ac.rs
https://smart2rail-project.net
https://rails-project.eu/downloads/deliverables
https://rails-project.eu/downloads/deliverables

on an autoencoder with semantic segmentation,” in Proceedings of the Asian Confer-
ence on Computer Vision, 2020.

[17] K. Lis, K. Nakka, P. Fua, and M. Salzmann, “Detecting the unexpected via image resyn-
thesis,” in Proceedings of the IEEE/CVF International Conference on Computer Vision,
2019, pp. 2152–2161.

[18] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro, “High-resolution
image synthesis and semantic manipulation with conditional gans,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2018, pp. 8798–8807.

[19] Q. Chen and V. Koltun, “Photographic image synthesis with cascaded refinement net-
works,” in Proceedings of the IEEE international conference on computer vision, 2017,
pp. 1511–1520.

[20] P. Bergmann, S. Löwe, M. Fauser, D. Sattlegger, and C. Steger, “Improving unsuper-
vised defect segmentation by applying structural similarity to autoencoders,” in Pro-
ceedings of the 14th International Joint Conference on Computer Vision, Imaging and
Computer Graphics Theory and Applications. SCITEPRESS - Science and Technol-
ogy Publications, 2019.

[21] L. Wang, D. Zhang, J. Guo, and Y. Han, “Image anomaly detection using normal data
only by latent space resampling,” Applied Sciences, vol. 10, no. 23, 2020.

[22] D. Ristić-Durrant, M. Franke, K. Michels, V. Nikolić, M. Banić, and M. Simonović, “Deep
learning-based obstacle detection and distance estimation using object bounding box,”
Facta Universitatis. Series: Automatic Control and Robotics, vol. 20, no. 2, pp. 075–085,
2021.

[23] SMART, “Deliverable D3.1: Report on algorithms for 2D image processing,” 2018.
[Online]. Available: https://projects.shift2rail.org/s2r ip5 n.aspx?p=SMART

[24] Y. Zou, Z. Yu, B. Kumar, and J. Wang, “Unsupervised domain adaptation for semantic
segmentation via class-balanced self-training,” in Proceedings of the European confer-
ence on computer vision (ECCV), 2018, pp. 289–305.

[25] G. Pastore, F. Cermelli, Y. Xian, M. Mancini, Z. Akata, and B. Caputo, “A closer look
at self-training for zero-label semantic segmentation,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021, pp. 2693–2702.

[26] F. Pan, I. Shin, F. Rameau, S. Lee, and I. S. Kweon, “Unsupervised intra-domain
adaptation for semantic segmentation through self-supervision,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 3764–
3773.

[27] Y. Zhu, Z. Zhang, C. Wu, Z. Zhang, T. He, H. Zhang, R. Manmatha, M. Li, and A. Smola,
“Improving semantic segmentation via self-training,” arXiv preprint arXiv:2004.14960,
2020.

[28] A. Van Den Oord, O. Vinyals et al., “Neural discrete representation learning,” Advances
in neural information processing systems, vol. 30, 2017.

[29] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assessment: from error
visibility to structural similarity,” IEEE Transactions on Image Processing, vol. 13, no. 4,
pp. 600–612, 2004.

[30] European Railway Agency, “ERTMS - System Requirements Specification - UNISIG

GA 881782 Page 72 | 74

https://projects.shift2rail.org/s2r_ip5_n.aspx?p=SMART

SUBSET-026,” 2014. [Online]. Available: https://www.era.europa.eu/content/set-speci
fications-3-etcs-b3-r2-gsm-r-b1 en

[31] N. Bernini, M. Bertozzi, L. Castangia, M. Patander, and M. Sabbatelli, “Real-time ob-
stacle detection using stereo vision for autonomous ground vehicles: A survey,” in 17th
International IEEE Conference on Intelligent Transportation Systems (ITSC), 2014, pp.
873–878.

[32] A. Dairi, F. Harrou, M. Senouci, and Y. Sun, “Unsupervised obstacle detection in driv-
ing environments using deep-learning-based stereovision,” Robotics and Autonomous
Systems, vol. 100, pp. 287–301, 2018.

[33] J. Tang, S. Li, and P. Liu, “A review of lane detection methods based on deep learning,”
Pattern Recognition, vol. 111, p. 107623, 2021.

[34] N. Zhao, C. Roberts, S. Hillmansen, Z. Tian, P. Weston, and L. Chen, “An inte-
grated metro operation optimization to minimize energy consumption,” Transportation
Research Part C: Emerging Technologies, vol. 75, pp. 168–182, 2017.

[35] G. Fiengo, D. G. Lui, A. Petrillo, S. Santini, and M. Tufo, “Distributed robust pid control for
leader tracking in uncertain connected ground vehicles with v2v communication delay,”
IEEE/ASME Transactions on Mechatronics, vol. 24, no. 3, pp. 1153–1165, 2019.

[36] “X2Rail-3 Deliverable 6.1 - Virtual Train Coupling System Concept and Application
Conditions,” 2020. [Online]. Available: https://projects.shift2rail.org/s2r ip2 n.aspx?p=
X2RAIL-3

[37] E. Quaglietta, M. Wang, and R. M. Goverde, “A multi-state train-following model for the
analysis of virtual coupling railway operations,” Journal of Rail Transport Planning &
Management, vol. 15, p. 100195, 2020.

[38] E. Quaglietta, P. Spartalis, M. Wang, R. M. Goverde, and P. van Koningsbruggen, “Mod-
elling and analysis of virtual coupling with dynamic safety margin considering risk fac-
tors in railway operations,” Journal of Rail Transport Planning & Management, vol. 22,
p. 100313, 2022.

[39] J. Park, B.-H. Lee, and Y. Eun, “Virtual coupling of railway vehicles: Gap reference for
merge and separation, robust control, and position measurement,” IEEE Transactions
on Intelligent Transportation Systems, 2020.

[40] S. Iwnicki, Handbook of railway vehicle dynamics. CRC press, 2006.
[41] J. Felez, Y. Kim, and F. Borrelli, “A model predictive control approach for virtual coupling

in railways,” IEEE Transactions on Intelligent Transportation Systems, vol. 20, no. 7, pp.
2728–2739, 2019.

[42] Y. Yang and F. Yan, “Research on train dynamic coupling strategy based on distributed
model predictive control,” in Journal of Physics: Conference Series, vol. 2183, no. 1.
IOP Publishing, 2022, p. 012029.

[43] M. Schenker, R. Parise, and J. Goikoetxea, “Concept and performance analysis of
virtual coupling for railway vehicles,” in Proceedings of the 3rd SmartRaCon Scien-
tific Seminar, vol. 38. Deutsches Zentrum für Luft-und Raumfahrt eV Institut für
Verkehrssystemtechnik, 2021, pp. 81–91.

[44] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra,
“Continuous control with deep reinforcement learning,” arXiv preprint arXiv:1509.02971,
2015.

GA 881782 Page 73 | 74

https://www.era.europa.eu/content/set-specifications-3-etcs-b3-r2-gsm-r-b1_en
https://www.era.europa.eu/content/set-specifications-3-etcs-b3-r2-gsm-r-b1_en
https://projects.shift2rail.org/s2r_ip2_n.aspx?p=X2RAIL-3
https://projects.shift2rail.org/s2r_ip2_n.aspx?p=X2RAIL-3

[45] A. Candeli, G. De Tommasi, D. G. Lui, A. Mele, S. Santini, and G. Tartaglione, “A
deep deterministic policy gradient learning approach to missile autopilot design,” IEEE
Access, 2022.

[46] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “Deep reinforce-
ment learning: A brief survey,” IEEE Signal Processing Magazine, vol. 34, no. 6, pp.
26–38, 2017.

[47] T. Kobayashi and W. E. L. Ilboudo, “T-soft update of target network for deep reinforce-
ment learning,” Neural Networks, vol. 136, pp. 63–71, 2021.

[48] D. T. Gillespie, “Exact numerical simulation of the ornstein-uhlenbeck process and its
integral,” Physical review E, vol. 54, no. 2, p. 2084, 1996.

[49] S. Kuutti, R. Bowden, Y. Jin, P. Barber, and S. Fallah, “A survey of deep learning appli-
cations to autonomous vehicle control,” IEEE Transactions on Intelligent Transportation
Systems, vol. 22, no. 2, pp. 712–733, 2020.

[50] H. Tang, Q. Wang, and X. Feng, “Robust stochastic control for high-speed trains with
nonlinearity, parametric uncertainty, and multiple time-varying delays,” IEEE Transac-
tions on Intelligent Transportation Systems, vol. 19, no. 4, pp. 1027–1037, 2017.

[51] H. Tang, X. Ge, Q. Liu, and Q. Wang, “Robust H∞ control of high-speed trains with
parameter uncertainties and unpredictable time-varying delays,” in 2016 35th Chinese
Control Conference (CCC). IEEE, 2016, pp. 10 173–10 178.

[52] S. Yi, Principles of railway location and design. Academic Press, 2017.
[53] D. Cabecinhas, R. Cunha, and C. Silvestre, “A nonlinear quadrotor trajectory tracking

controller with disturbance rejection,” Control Engineering Practice, vol. 26, pp. 1–10,
2014.

[54] C. Baker, “The simulation of unsteady aerodynamic cross wind forces on trains,” Journal
of wind engineering and industrial aerodynamics, vol. 98, no. 2, pp. 88–99, 2010.

[55] Shift2Rail, “Deliverable D4.1: Reference Scenario,” 2016. [Online]. Available: https:
//projects.shift2rail.org/download.aspx?id=b13c7f54-eac0-4e36-8f3a-e61d6b76c489

[56] J. Aoun, E. Quaglietta, R. M. Goverde, M. Scheidt, M. Blumenfeld, A. Jack, and B. Red-
fern, “A hybrid delphi-ahp multi-criteria analysis of moving block and virtual coupling
railway signalling,” Transportation Research Part C: Emerging Technologies, vol. 129,
p. 103250, 2021.

[57] S. Su, J. She, K. Li, X. Wang, and Y. Zhou, “A nonlinear safety equilibrium spacing
based model predictive control for virtually coupled train set over gradient terrains,”
IEEE Transactions on Transportation Electrification, 2021.

[58] Y. Wu, S. E. Li, J. Cortés, and K. Poolla, “Distributed sliding mode control for nonlinear
heterogeneous platoon systems with positive definite topologies,” IEEE Transactions on
Control Systems Technology, vol. 28, no. 4, pp. 1272–1283, 2019.

GA 881782 Page 74 | 74

https://projects.shift2rail.org/download.aspx?id=b13c7f54-eac0-4e36-8f3a-e61d6b76c489
https://projects.shift2rail.org/download.aspx?id=b13c7f54-eac0-4e36-8f3a-e61d6b76c489

	Executive Summary
	Abbreviations and acronyms
	1 Background
	2 Objective
	3 Introduction
	4 Railway Obstacle Detection and Collision Avoidance
	4.1 Introduction
	4.2 Model Description
	4.2.1 Rails Detection Module (RDM)
	4.2.2 Object Detection Module (ODM)
	4.2.3 Anomaly Detection Module (ADM)
	4.2.4 Obstacle Detection and Distance Estimation Modules

	4.3 Dataset Generation
	4.3.1 Data Preparation
	4.3.2 Data Labelling for the Rails Detection Module
	4.3.2.1 Customisation of RailSem19
	4.3.2.2 Extracting Frames from the Simulated Scenario
	4.3.2.3 Pre-training U-Net on the Customised RailSem19
	4.3.2.4 Self-Training for Semi-Automatic Labelling

	4.4 Training and Validation
	4.4.1 Rails Detection Module
	4.4.1.1 Data Preparation
	4.4.1.2 Training, Validating, and Testing U-Net
	4.4.1.3 U-Net Post-Processing

	4.4.2 Anomaly Detection Module
	4.4.2.1 Data Preparation
	4.4.2.2 Proposed Anomaly Detection Framework
	4.4.2.3 Training, Validating, and Testing SSIM-VQ-VAE

	4.5 Evaluation of Results
	4.6 Discussion of Results
	4.6.1 Evaluation of KPIs and Limits of the Approach
	4.6.2 Main Findings and Future Improvements

	5 Cooperative Driving for Virtual Coupling of Autonomous Trains
	5.1 Introduction
	5.2 Model Description
	5.2.1 Consists Dynamics
	5.2.2 Safety Relative Braking Distance
	5.2.3 Problem Statement
	5.2.4 DDPG Virtual Coupling Controller
	5.2.4.1 Neural Network Structures
	5.2.4.2 Exploration Strategy

	5.3 Dataset Generation
	5.4 Training and Validation
	5.4.1 DDPG Agent Training
	5.4.2 Validation of the VCTS Controller

	5.5 Evaluation of Results
	5.5.1 Operational Scenario 1: VCTS Forming
	5.5.2 Operational Scenario 2: VCTS Splitting
	5.5.3 Operational Scenario 3: Leader Tracking

	5.6 Discussion of Results

	6 Conclusions

