

Horizon 2020 European Union Funding for Research & Innovation

Graph-SAGE based Railway Incident Attribution and cause-effect relation prediction

Ruifan Tang PhD Student in Institute for Transport Studies University of Leeds

RAILS Final Event | May 30, 2023

Railway Problem Description

Objective of the PoC

Investigate cause-effect relations between incidents and predict how a specific delay at a certain location affects the wider network

Main Issues and Challenges Limited and incomplete data

Generalization to diverse railway systems

Constraints / Requirements

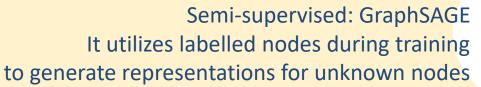
Understand complex non-linear spatio-temporal Interactions between incidents/trains In-depth insights into delay propagation for better understanding of network-wide effects

are being felt across the country

22:48 - 20 hours on and the effects

Key Performance Indicators Prediction Accuracy Computational Time Effectiveness

RAILS Final Workshop | May 30, 2023


Proof-of-Concept as a **Benchmark**

Γ		
	<u> </u>	
L		

Al Application Machine Learning

Al Related Disciplines Graph Neural Networks

AI Techniques

Inspiring Solutions

Neighborhood Information Aggregation Graph Representation Learning Graph Visualization Link Prediction

Datasets

Real-world Network data Network Rail Open Data portal

Developments / Implementations

Capture the inherent structural patterns/relations Performing a graph visualization module Conduct a link prediction between labelled nodes

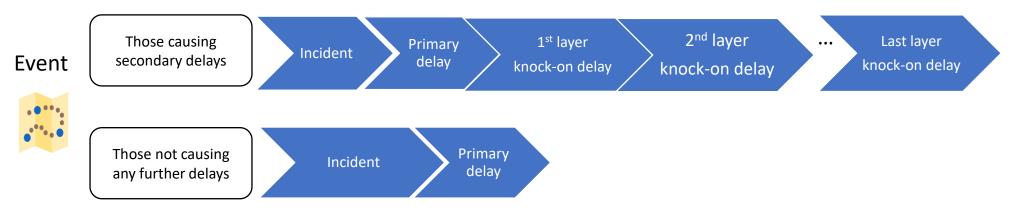
Exploited Software and Framework Stellargraph, PyTorch Geometric, Sklearn, Keras

Hardware Requirements Google Colaboratory GPU(s) with CUDA cores and 16GB System RAM

Approach: A Modular Architecture

The proposed framework consist of:

- Big Data-based visualizations that incorporate the complex interactions between modelled train services and events.
- A GraphSAGE-based model has been developed to estimate the potential primary/secondary delay resulting from the existing incidents/train service event across the network of TPE routes.


Description of dataset

Two main sources:

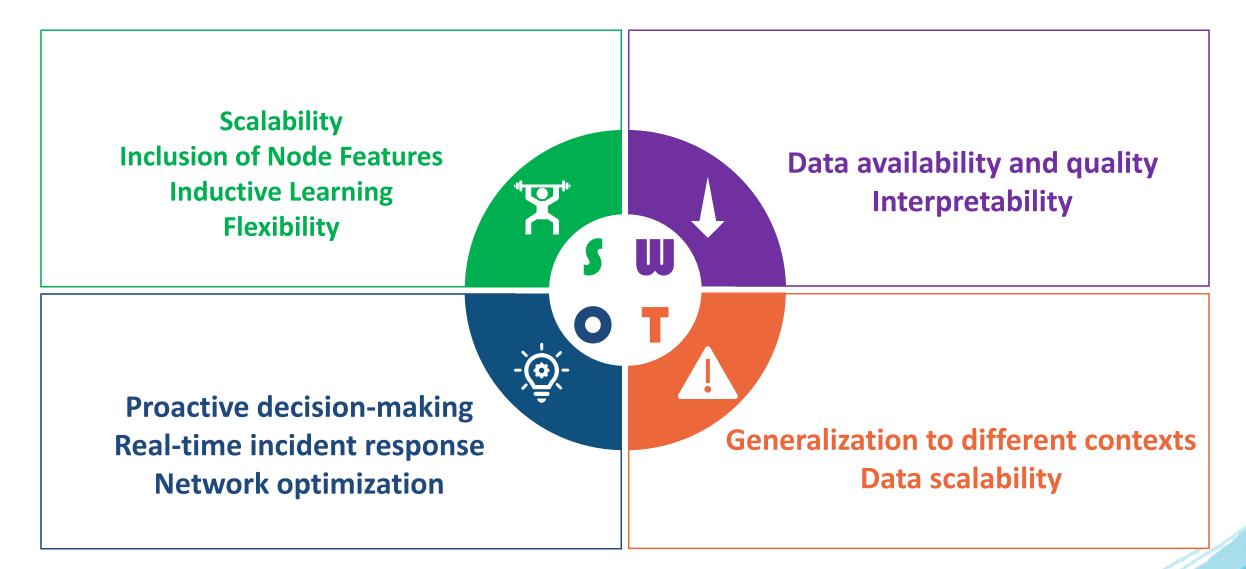
The cooperating railway undertaking **TransPennine Express** provides the historic realwooperation timetables including train route information and their corresponding depicted arrival/dwell time, etc.

Delay attribution data collected from **Network Rail Open Data portal** including incident and department attors, type of incidents, responsible/affected service(s), and reactionary delay timestanes/locations, etc.

Data Explanation

Module Implementation

3D interactive visualization


- 1) Extract all the events (i.e., individual incidents)
- 2) Create a node list for all the train services in the network (those with primary/secondary delays or both), and combine it with the list generated in 1)
- 3) Create primary delay reaction set & knock-on delay reaction set for the two-categorized events respectively, according to responsible/affected train in delay attribution dataset.

GraphSAGE-based model

- Sampling and normalising all the attributes for nodes (i.e., individual incidents) an based on which create a graph.
- 2) Define the distance (e.g., how many hops) between two nodes.
- 3) Define the desired aggregation strategy (i.e., Mean/Max-Pooling/Attention-based Aggregation)
- 4) Process the label attributes classification/regression.

SWOT Analysis of the Investigated Approach

Thank you for your attention!

- Deliverable D4.1: WP4 Report on case studies and analysis of transferability from other sectors (Railway planning and management)
- Deliverable D4.2: WP4 Report on AI approaches and models
- Deliverable D4.3: WP4 Report on experimentation, analysis, and discussion of results
- *Oeliverable D4.4: WP4 Report on identification of future innovation needs and recommendations for improvements*

Available at: https://rails-project.eu/downloads/deliverables/

RAILS Final Workshop | May 30, 2023