

Horizon 2020 European Union Funding for Research & Innovation

RL-based Rolling Stock Rostering (consider maintenance)

Ruifan Tang PhD Student in Institute for Transport Studies University of Leeds

RAILS Final Event | May 30, 2023

Railway Problem and Motivation

--- Objective of the PoC

Explore the feasibility of applying RL approaches Into Rolling Stock maintenance routing problem

Constraints / Requirements

Minimize the overall usage of rolling stock units Consider the accumulated travelling mileage

Main Issues and Challenges

Data Availability & Acquisition NP-hard problem if there are too many services to fulfill

Key Performance Indicators Computation Resources Usage of minimum rolling stock units

Proof-of-Concept as a **Benchmark**

		2
L	<u> </u>	I
L		I

Al Application Adversarial Search

Al Related Disciplines Reinforcement Learning

Al Techniques

Semi-supervised - Agent Based Modelling Supervised – Deep Q-Network Learning Self-Training / Optimization

Inspiring Solutions

Typical maintenance routing (heuristics) TSP (Travelling Salesman Problem) CVRP (Capacitated Vehicle Routing Problem) Intelligent Rolling Stock Rostering **Datasets** TransPennine Express Real-world timetable data Synthetic Data

Developments / Implementations

Creating the RS routing/rostering environment Designing the Q-Learning Algorithm as needed Writing the training loop

Exploited Software and Framework Keras-RL: DQNAgent Scipy, Numpy, Pandas

Hardware Requirements Google Colaboratory GPU(s) with CUDA cores and 16GB System RAM

Problem scenarios

RAILS Final Event | May 30, 2023

Approach: A Modular Architecture

Approach: reinforcement learning components

The settings of reinforcement learning module				
Fundamental settings	States maintained	Other settings		
 Set the Agents as the RS units, keep the number of agent as less as possible 	 Accumulated kilometres (AK) as the AK-state (For each RS units) 	 Reward: the necessary costs (measured with time) between two consecutive services, including empty run time + station waiting time + maintenance time (if any) 		
 Maintain several Q-matrixes for each arc category - there are multiple arcs between each station pair 	• Maintenance-state: When the AK over a threshold, i.e., maximum kms for	• Environment: the different train services to deliver with different origins & destinations, and the next station where to navigate		
 Objective constraints: Minimum overall costs of RS units & number of empty runs 	maintenance, set the next action with a penalty value: Fail	 Actions: at each location, the decisions to make are "which service do I chose to deliver next" 		

SWOT Analysis of the Investigated Approach

Recommendations

Thank you for your attention!

- Deliverable D3.1: WP3 Report on case studies and analysis of transferability from other sectors (safety and automation)
 Deliverable D3.2: WP3 Report on AI approaches and models
- V Deliverable D3.3: WP3 Report on experimentation, analysis, and discussion of results
- *O Deliverable D3.4: WP3 Report on identification of future innovation needs and recommendations for improvements*

Available at: https://rails-project.eu/downloads/deliverables/