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Executive Summary

This Deliverable leverages the results achieved in Deliverable D4.1 to address AI ap-
proaches customised to the rail sector. On the basis of the pilot cases studies selected
in Deliverable D4.1, i.e., primary delay prediction and incident attribute analysis. Specific
proof-of-concepts are provided to investigate the adoption of AI methods for smarter railway
traffic planning and management.

The report specifically discusses the following topics for each case study: i) a description of
the background to identify the main objectives and the open issues; ii) the identification of
appropriate research questions; iii) the effective dimensions/measures that can be used as
evaluation criteria in rail transport planning and management; iv) the analysis of technology
and methodological alternatives; v) a high-level description of the selected AI approach and
its possible adaptation to railway; vi) the identification of the principal technological and
architectural issues to be considered.

The suggested proof-of-concepts are intended to provide a first glimpse into the defining
of qualitative and technological roadmaps that might lead to the implementation of AI
applications designed to improve rail traffic planning and management.
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Abbreviations and acronyms

Abbreviations / Acronyms Description
TOC Train Operating Company
SDNE Structural Deep Network Embedding
PCA Principle Component Analysis
DT Decision Tree
RF Random Forest
SVD Singular Value Decomposition
NLP Natural Language Processing
KNN K-Nearest Neighbour Algorithm
BRS British Railway System
PPM Public Performance Measure

GA 881782 Page 5 | 33



1. Background

This document is complemented as the Deliverable D4.2 “WP4 Report on AI approaches
and models” of the Shift2Rail JU project “Roadmaps for AI integration in the Rail Sector”
(RAILS) - under the framework of Shift2Rail’s Innovation Programme IPX. As such, RAILS
does not focus on a specific domain, nor does it directly contribute to specific Technical
Demonstrators but contributes to Disruptive Innovation and Exploratory Research in the
field of Artificial Intelligence within the Shift2Rail Innovation Programme. The successor of
the Shift2Rail Joint Undertaking is currently the Europe’s Rail Joint Undertaking (EURail)
established by Council Regulation (EU) 2021/2085 of 19 November 2021. The RAILS
workpackage WP4 investigates the adoption of machine learning techniques and other
AI methods for enhanced railway planning and management. The present Deliverable
describes the work carried out in task 4.2 (Development of AI approaches and models)
whose aim is to develop AI approaches according to the results and choices reported in
D4.1:

• Directions of transferability, considering some identified research lines a) Integrating
heuristic searching strategies with deep neural networks for vehicle routing; b) Alternative
routes services/navigation for passengers based on Cognitive Internet of Things; c) Attribut-
ing Primary and Secondary delays in Railway networks using Explainable AI;

• Pilot case studies, where three different potential case studies have been proposed and
introduced as future research research directions while not intended to be all addressed
within this project horizon. They are: Train Delay Prediction for each train service, Disrup-
tions Attribution from a network perspective, and Rescheduling after delays.

The case studies mentioned in D4.1 were aiming at providing the context for proofs-of- con-
cept. However, the scope of this deliverable is to prepare the ground for the actual experi-
mentation, which will be performed in the continuation of the project in order to highlight the
main challenges, technical obstacles, opportunities, and artificial intelligence/machine learn-
ing frameworks that applied to railway delay/disruption management applications. Those
results will be used to define the future roadmaps for effective AI integration in the railway
planning and management sector.
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2. Objective

The main goals for the RAILS workpackages (WP2, WP3, and WP4) are to establish
pilot case studies and provide proof of concepts that will eventually lead to a technical
roadmap for an efficient adoption of AI in the rail industry. With regard to the RAILS project’s
Objectives 4 and 5, more specifically, the project activities implemented in this document
and the following Deliverable D4.3 are:

• Development of both Experimental and Methodological proof-of-concepts.
• Development of Benchmarks, Models, and Simulations tools.

This deliverable formalizes the pilot case studies identified in Deliverable D4.1 (”Report on
case studies and analysis of transferability from other sectors”), and provides feasibility
studies for the adoption of AI and related techniques in the area of rail planning and manage-
ment. Deliverable D4.1 contains a report on case studies and an analysis of transferability
from other sectors. To examine the real-world requirements, obstacles, and opportunities
while using artificial intelligence and machine learning to railway traffic management issues,
we particularly chose two pertinent case studies. It is worth to mention that not all the
candidate case studies we proposed is going to expanded in detail in this deliverable, due to
the scope of WP4 has been refined in line with the actual proof-of-concept requirements of
RAILS project. Considering the gaps of objectives and implementation feasibility between
the first two and the third case study, we skipped the third one such that it will remain on
the concept introduction phase. That is, according to the opinion from the project board
and Leeds advisors, the WP4 should be conducted from the perspective Railway service
performance evaluation and analysis rather than focusing on tactical planning stage.

The first case-study addresses railway primary delays prediction - Enhancing the de-
pendability and standard of train passenger services is crucial, as is minimizing financial
losses for both customers and service providers. Regarding strategies, reliable train delay
prediction can offer railway dispatchers and infrastructure management helpful insights
for rescheduling train services and allocating railway resources in advance, allowing
passengers to reschedule their journey before any delays arise. To predict the occur-
rence of primary and secondary delays, conventional methods, such as mathematical
and stochastic models, have been widely used. However, as the volume of available
data grows, it becomes less effective to use extracted historical operational data and
incident records in numerical analysis models to predict the status of a delay for a par-
ticular train service because the mechanism underlying train delay status is complex
and its determining factors collectively contribute to the occurrence of train delays. We
reviewed the prior research and tried to find a suitable approach to coherently aggregate
them together for investigating the problem of train delay prediction from a novel perspective.

The second case study relates to incident distribution analysis and how these incidents trig-
gered cascading delays. A simulation of incidents that occurred at different links or railway
stations to predict the traits/performance measures of passenger services affected by inci-
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dents will be conducted. On a higher level, a generic prediction model incorporating related
affecting factors will show the possibility of fitting the distributional probability into each dis-
ruption type per station and per time period. During this, we would discover the linear or
non-linear relations between presumed disruption predictors and the occurrence likelihood
of different types of accidents for each station. In recent years, the primary delay in rail
services has remained consistent, but the reactive delay has continuously increased and
proved challenging to comprehend and manage. The consequences of a reactive delay
depend on how different trains interact with one another and the track’s network properties.
Multiple trains may be affected by cascading reactionary chains where one reactionary delay
leads to other reactionary delays. It is challenging to forecast these impacts and cascading
patterns using conventional methods. An alternate approach is a better way to comprehend
and obtain insights into the root causes of reactive delay and to assess the likely effect that
changes will have on the delivery of services.
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3. Introduction

This document offers a thorough explanation of the AI solutions and methods for dealing
with the concerns and difficulties brought on by the reference applications, the associated
models and metrics, as well as the technical and practical obstacles. As a result, this
deliverable provides information on potential technological and methodological solutions,
alternatives, and important issues that will need to be addressed by later implementations.

The two primary chapters that deal with the concerns listed above for the two pilot case
studies make up the bulk of this document: Chapter 4 is devoted to Graph-embedding based
Train Delay Prediction, and Chapter 5 is concerned with ML-based Disruption Probability
Estimation on Railway Stations.

The two chapters share the same structure: a brief presentation of the scope and chal-
lenges of the selected case study (Sections 4.1 and 5.1), the specific objectives of related
the proof-of-concept (Sections 4.3 and 5.3), a description of the proposed approach and
exploitable tools (Sections 4.4 and 5.4), datasets (Sections 4.5 and 5.6), a presentation of
the AI techniques being exploited in the development of the proof-of-concept (Sections 4.6
and 5.5), and a discussion about expected results and possible criticalities (Sections 4.7
and 5.7).

The implementation and experimentation activities are ongoing according to the objectives,
approaches and techniques reported in this document. Details and results of these activi-
ties are the object of the next Deliverable D4.3 (“Report on experimentation, analysis and
discussion of results”).
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4. Primary Delay Prediction

4.1. Introduction

Delay prediction in the railway sector, according to [1], is a process of estimating proba-
bilities that a train fail to arrive at a subsequent check point (i.e., stations or junctions) on
the time shown on a pre-defined timetable, and we typically define the differences between
scheduled arrival time and actual arrival time as ’arrival delays’.

Many researchers have looked into the various factors that influence railway punctuality.
Delays can be caused by a number of different factors. Unanticipated disruptions, such as
power and signal system failures, train malfunctions, and inclement weather, cause severe
delays, while predictable restrictions, such as speed restrictions, overrunning engineering
works, or crew shortages, usually cause minor delays, according to a comprehensive inves-
tigation by [2]. Apart from them, Smaller events that occur more frequently referred to as
”incidents” include problems that the railway undertakings could not have anticipated, such
as specific passenger actions or damage to trains by motor vehicles, or the forced closure
of a station. Current research commonly use statistical distribution analysis and regression
models to examine the distributional elements of railway delays, as well as the link between
delays and their impacting factors. For example, [3] looked into the statistical distribution
pattern for Chinese high-speed railway train delays by first assessing and analysing the
reasons for delays, as well as the types of disturbances, and also their position and timing.

[4] suggested a delay prediction model for the Hong Kong subway system, which evaluates
the interaction between external infrastructure defects and prospective congestions, to in-
vestigate the correlations between delays and various types of interference variables. [5]
has begun a detailed investigation of the probable elements that influence the punctuality
of a specific train on weekdays over the course of a month. The following four factors were
discovered: With multiple regression coefficient estimation, station, train number, weekday,
and season could be utilised to explain around 15% of the incidences of delays. [6] investi-
gated the association between train delays and severe weather conditions by collecting and
analysing a three-month dataset of weather along the Beijing-Guangzhou line, China’s bus-
iest train route. [7] investigated the harmful effects of difficult winter weather conditions on
rail operation systems in Norway, Sweden, Switzerland, and Poland throughout 2010, and
applied their findings to a novel example involving train delays in Finland. Based on changes
in met-states on the Finnish network as well as weather-related infrastructure damage, they
assessed the likelihood of train delays.

4.2. Background and Description

Primary and secondary delays are the two types of train delays that are regularly seen
in real-world circumstances. Primary delays are produced by an incident/disturbance on
the tracks, and recorded as the differences between scheduled and actual timetable. One
of its key characteristics is that they are only important when unexpected events occur,
regardless of whether the train was running on time [8]. Primary delay is the most common
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type in a normal railway system in terms of quantity, and it has gotten a lot of attention in
terms of delay management from both train operators and passengers.

Primary delays could, in some situations, propagate from the current place to adjacent
delay check locations or even a network segment. As a result, the secondary delay, also
known as knock-on delay, is created. They are usually triggered by primary delay rather
than by the timetable. Delay propagation is an important factor to consider when it comes
to rail service quality. The degree of robustness of the timetable and the reliability of train
operations is reflected in the cascading of delays [8]. When one train comes to a halt, for
example, subsequent trains must wait, causing a domino effect until the initial train resumes
service. [9] distinguish between these two types of delays by looking into their causes.
Primary delays, as previously stated, refer to the positive difference between the actual and
planned departure/arrival time. It is caused by an occurrence, and a robust timetable can
absorb most of these deviations to prevent them from spreading by setting margin time
between stations and trains, but a few of them can spread randomly around the rail network
and cause secondary delays if traffic is heavy.

Current applications for analyzing/simulating the incidence of knock-on delays include two
key use-cases. The first is real-time operational prediction, which involves forecasting delays
in order to improve TOC capabilities and compensate for unexpected delays. This type of
software can provide additional information regarding probable travel delays. For example,
a neural network-based delay prediction system was built to assist dispatchers in improving
real-time delay monitoring in a variety of real train networks in Germany [10]. Traffic
simulation and analysis are another application that is widely utilised in strategic planning.
For example, the results of a knock-on delay study can be converted into monetary values
for risk-averse strategic investment advice. In particular, the latter way of analysing primary
and secondary delay correlations in order to comprehend the insights between them and
the delay propagation mechanism. While real-time delay prediction paradigms have made
significant headway, there has been minimal effort to dissect delays into their fundamental
and secondary causes.

According to what we previously discussed, many external interference elements might im-
pair the punctuality of passenger services. Furthermore, traffic levels in different regions of
the network are geographically intertwined and linked. Meanwhile, they have a lot of vari-
ability and complexity, which makes it more difficult to estimate train delays accurately. As
previously stated, incidents and the propagation of primary delays are technically driven by
complicated nonlinear spatial-temporal correlations or interactions between variables, which
are inherently difficult to foresee in real-world circumstances. To support such a claim, the
following points from the literature are summarised:

• Because the delay of one train at the station would affect the regular arrival or depar-
ture of following trains, producing the spread of train delays, the train’s delay would
have a considerable time-domain dependence.

• The spatial dependency between the station and the nearby railway resources is con-
siderable due to their geographical location and spatial distance. That is, adjacent
railway stations share infrastructure resources such as sectors, tracks, and waypoints,
and the status of these resources at one station may affect the status of these re-
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sources at the next station.
• A significant spatial correlation exists between railway stations connected by a sin-

gle route/corridor. In other words, each of the pre-scheduled stations in a line will be
served by a train. The traffic flow on a busy line looks to be higher than on a less
frequent service line. This means that the stations along this line will have more op-
portunity to engage (accepting trains from upstream stations and sending trains to
downstream stations).

4.3. Objectives and Research Questions

The purpose of this case study’s delay prediction is to estimate the average primary delay
level of a certain time in the future using data from various periods in the railway’s oper-
ating history. Taking into account the static characteristics of each railway station in the
network, as well as the structural network characteristics (i.e., connectivity between these
stations, route weight, and network density for various areas), etc. Because each railway
station’s delay status is influenced by other stations and is constantly changing, it must be
in close accordance with not only the station’s own delay status, but also the impact of other
stations—the closer the geographical distance between railway stations, the greater the im-
pact.
The Structural Deep Network Embedding (SDNE) graph embedding algorithm was first cre-
ated as an effective dimensionality reduction tool in the computer science field by [11]. A
similarity network is constructed for a set of D-dimensional nodes based on their neighbour-
hood information, and each node of the graph is then embedded into a d-dimensional vector
space, where d ≪ D. The main idea behind embedding is to keep related nodes closer
to one other in vector space so that the original network’s structural relationships can be
preserved. The main goal of this concept is to create an N-dimensional vector for each rail-
way station, with each element representing the scalar value on a specific vector direction in
Euclidean space. Each value in the vector has no discernible significance, yet it does repre-
sent a characteristic of a certain station in part. When we wish to compare how similar two
stations are, such a representation comes in handy. In this regard, the SDNE approach con-
siderably compresses the fundamental information, making vector operations simpler and
faster than traditional mathematical procedures.
We also propose combining the obtained hyper node embedding vectors (i.e. nodes/stations
distributed sequentially on a specific route) into a route embedding vector, which com-
presses and aggregates more structural information of the target railway network, reduc-
ing the dimensions of available features. The following requirements must be met by the
expected route embedding depictions:

• Regardless of the length of a specific route, the obtained route embedding vectors
must be uniform in size – this makes them more convenient to use as input features
for subsequent prediction tasks.

• The route representations can explicitly reflect the characteristics of the entire route,
including the density of en-route station cluster, the sequence of these stations, and
the degree of congestion on this route.

• Local and global characteristics can be effectively preserved by route embedding vec-
tors.
We identified three research questions to explore in this study based on the horizon
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we discussed:

RQ1: What graph-based method can be applied into the process of encoding structural
characteristics and temporal-spatial dependency among network elements? Will the
generated node embedding representations effectively preserve the essential informa-
tion of network?

RQ2: How can we compute the route embedding vectors by using the node embedding rep-
resentations? Will the results obtained by implementing route embedding outperform
that of only using node embedding in this case?

RQ3: Is possible to improve the prediction accuracy on future primary delay estimation by
incorporating the SDNE framework with some popular ML-based prediction models,
e.g., Decision Tree, Random Forest, and Neural Networks? To what extent it will be
boosted?

RQ4: What are the potential correlations between primary delay and secondary delay and
what are the most relevant prerequisites and influencing factors that determine the
occurrence of secondary delays (by considering station features and network structure
simultaneously)?

4.4. Methodology and Tools

The acquisition of structural deep network representation is the most important aspect of the
whole approach framework. To learn station representation in the railway network, a novel
deep model named ”Structural Deep Network Embedding technique” would be proposed
in order to capture the highly non-linear structure efficiently. This model is based on the re-
cent successful implementation of deep learning techniques that were first derived from [11],
which has been demonstrated by [12–15] to have powerful representation ability in dealing
with various datatypes such as audio speech, image grids, and texts. However, there is no
explicit proof that such an attempt on the public transportation network, particularly the train
network, has been made. The goal of this module is to answer the RQ1 that we discussed
in the previous section. The suggested SDNE framework is depicted in Figure 4.1 below.
In this framework, characteristics of the original railway network as the input being fed into
the Encoder-Decoder layers, whose detail structure will be introduced within the following
paragraphs and equation 4.1 - including the identification of connectivity status between any
of two nodes and the definition of 1st-order and 2nd-order proximity. Loss functions corre-
sponding to each proximity in the output layer will convey the optimized parameters back
to the Encoder-Decoder, for updating the generated embedding vector satisfying the mini-
mum overall loss costs during training. And then the last-round low-dimensional embedding
representation for each node in the network is obtained as the output of this framework.
As one of the gaps we identified in the D4.1, one of the expected outputs is to preserve both
local and global structure effectively. In order to preserve essential structure information and
sparsity as most as possible, we further give the definition of first-order and second-order
proximity by referring the research statements from [16]. The primary intuition of applying
SDNE to an existing network is to preserve the local network. That is, the local pairwise
proximity between the vertices must be preserved. Therefore we introduce the first-order
proximity as following:

First-order Proximity The first-order proximity describes the pairwise proximity between
vertices. For any pair of vertices/stations u and v, if an edge is observed then the
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Fig. 4.1. The flow-charted SDNE framework

weight corresponding to that edge wu,v indicates the first-order proximity between u
and v. Otherwise, their first-order proximity is 0.
This proximity implies that two nodes in real-world networks are highly similar if they
are connected by a certain edge. For example, when one paper cites other papers,
it means that they address similar topics. However, not all the vertexes are linked
together – the real-life datasets are so sparse that observed edges only account for a
small portion of all the combinations of vertexes. Therefore, capturing the first-order
proximity alone is not sufficient to dig out all the substantial information in the graph
and we then introduce second-order proximity as an alternative notion to explore the
global network structure.

Second-order Proximity The second-order proximity between a pair of vertices u and v
is the similarity describing their neighbourhood network structure. If we let pu =
(wu,1, wu,2, ..., wu,k) (k ∈ V ) denotes the first-order proximity of u with all the other re-
maining vertices in graph G. Then the second-order proximity between u and v is
determined by the similarity between pu and pv.
A straightforward intuition is that if two vertexes share multiple common neighbours,
they tend to be very similar even they are not directly connected to each other. For
example, in social networks, people who share similar friends tend to have similar
interests and characteristics thus tend to become friends. In another scenario, a cer-
tain word probably co-occur with the same sets of words that have similar meaning or
shown as commonly used words collocation. This is the reason why we want to apply
the second-order proximity to capture more relationships between nodes.

Before introducing the actual SDNE framework, we define a set of the terms and notations
which would be used later. Note that symbolˆabove the relevant parameters denotes the
parameters of the decoder.
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Notation Explanation
n Number of nodes in the network
p Number of edges in the network
K Number of layers in the model
V The set of vertexes in the network, where V = {v1, v2, ..., vn}
E The set of edges in the network, where E = {e1, e2, ..., en}
Au,v The adjacency matrix for the network, where u, v ∈ V

xd The input data vector, where d = {1, 2, ..., n}
x̂d The input data matrix, where d = {1, 2, ..., n}
X The input data matrix, where X = {x1, x2, ..., xn}
X̂ The input data matrix for reconstruction layers, where X̂ = {x̂1, x̂2, ..., x̂n, }
Y (k) The k-th layer hidden representations, where Y (k) =

{
y
(k)
1 , y

(k)
2 , ..., y

(k)
n ,

}
W (k) The k-th layer weight matrix
Ŵ (k) The k-th layer weight matrix in decoder
b(k) The k-th layer biases
b̂(k) The k-th layer biases in decoder
σ The sigmoid function
L Loss function
θ The collection of parameters

{
W (k), Ŵ (k), b(k), b̂(k), α, γ

}
Given a network G (V,E), where V = {v1, v2, ..., vn} is the set of railway stations in the
network, and where E = {e1, e2, ..., en} is the edge set composed of adjacent station
nodes in the geographical space, that is, if there is an observed edge between station
node 1 and station node 2, the second element of vector e1 should be 1 (the first element
shows the connectivity status of node 1 with itself). Therefore, we can obtain n adjacency
matrices regarding each station node in the network An = en, which contains n instances
A1, A2, .., An. For each elements Au,v in the instance An, if and only if there exists a link
between node u and v. i.e. An provides the information of the neighbourhood structure of
each vertex.

We next briefly review the key definition of deep auto-encoder. It is an unsupervised model
which is composed of two basic components: the encoder and decoder. Given the input X,
the hidden representations for each layer are shown as follow:{

y
(1)
i = σ

(
W (1)xi + b(1)

)
y
(k)
i = σ

(
W (k)y

(k−1)
i + b(k)

) (4.1)

The encoder consists of multiple non-linear functions that map the input data matrix xi to the
representation space and the decoder also contains some non-linear functions mapping the
representation in embedding space to reconstruction space. It is worth to mention that we
define the sigmoid function σ in our model as:
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σ
(
W (k)y

(k−1)
i + b(k)

)
=

1

1 + exp(−W (k)y
(k−1)
i − b(k))

(4.2)

After obtaining y
(K)
i we can then obtain the output x̂i by reversing the calculation process of

the encoder. The goal of the equation is to minimize the reconstruction error of the output
and the input. The basic form of our proposed loss function can be defined as follows:

L =
n∑

i=1

∥x̂i − xi∥22 (4.3)

Loss function for first-order proximity Besides preserving the global network structure, it
is al so essential to capture the local structure charateristics. Next we would define the
loss function for exploiting first-order proximity as below:

L1 =
∑
u,v∈V

Au,v

∥∥∥y(K)
i − y

(K)
j

∥∥∥2

2
(4.4)

The loss function above would generate a penalty when similar vertexes are mapped
far away in the embedding space. We incorporate this objective function to make sure
the vertexes directly linked by an edge would be mapped not so far in the embedding
space. Therefore our model can preserve the first-order proximity.

Loss function for second-order proximity If we exploit the adjacency matrix A as the in-
put of our proposed auto-encoder, reconstruction process would make the vertexes
with similar neighbourhood structures have similar latent representations. However,
what we want to embed is not only the observed links but simultaneously some legiti-
mate links that are not observed should be considered. That is to say, the connections
between vertexes do indicate their similarity but no links between them do not neces-
sarily imply their dissimilarity. Moreover, most of the real-world networks are so sparse
that the number of non-zero elements in A is far less than that of zero elements. To
address the problems above, we would impose more penalty to the reconstruction er-
ror of the non-zero elements than that of zero elements. So the revised loss function
can be defined as below:

L2 =
n∑

i=1

∥(x̂i − xi) ∗ bi∥22 =
∥∥∥(X̂ −X

)
∗B

∥∥∥2

F
(4.5)

Where ∗ represents the operation of Hadamard product [17], if Ai,j = 0 then bi,j = 1.
Otherwise bi,j = β > 1. The Frobenius norm (F-norm), sometimes also called the
Euclidean norm, is matrix norm of an matrix defined as the square root of the sum
of the absolute squares of its elements [18]. Now by using the revised loss function
for the second-order proximity, we can guarantee that the vertexes which have similar
neighbourhood structure will be mapped near in the representation space, not only
considering if they are connected or not.

The Objective function In order to preserve the first-order and second-order proximity si-
multaneously, we combine the equations together and joint minimizing the following
objective function:
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Lmix = L2 + αL1 + γL0 =
∥∥∥(X̂ −X

)
∗B

∥∥∥2

F
+ α

n∑
u,v∈V

Au,v

∥∥yKu − yKv
∥∥2

2
+ γL0 (4.6)

Where L0 is a L2-norm regularisation parameter used here for preventing overfitting,
the definition of it can be given as below:

L0 =
K∑
k=1

(∥∥W (k)
∥∥2

F
+
∥∥∥Ŵ (k)

∥∥∥2

F

)
(4.7)

So finally the objective function of the proposed model we want to minimize can be
written as:

Lmix =
∥∥∥(X̂ −X

)
∗B

∥∥∥2

F
+ α

n∑
u,v∈V

Au,v

∥∥yKu − yKv
∥∥2

2
+ γ

K∑
k=1

(∥∥W (k)
∥∥2

F
+
∥∥∥Ŵ (k)

∥∥∥2

F

)
(4.8)

The full algorithm for our proposed Structural Deep Network Embedding framework
would be presented as figure 4.2:

Fig. 4.2. Algorithm description for the SDNE model

4.5. Artificial Intelligence and Machine Learning Models

We use the following five methods as the baselines. The first three are classical supervised
machine-learning algorithms and we regard them as benchmarks for experimental analy-
sis. PCA and the SDNE methods are two graph embedding strategies we want to make
comparison regarding their capability on node embedding.

Decision Tree Classifier (DT)[19] is an algorithm that constructs a flowchart-like diagram
for assisting the process of classification where specific feature of the dataset would
be selected as the root node and each internal node represents a ‘test’ on an attribute.

Random Forest Classifier (RF)[20] is a classifier comprising a large number of individual
decision trees, in which each decision tree generates a prediction of the label class
and the predicted classification is determined by the major category output from the
individual trees.
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Multi-Layer Perceptron Classifier (MLP)[21] is a fully connected class of feedforward ar-
tificial neural network (ANN). A weight has been assigned to every artificial neuron for
demonstrating the strength of each connection between this neuron next one. Each
neuron will take the output of other neurons as input and conduct a mathematical com-
putation to produce its own output.

Principle Component Analysis (PCA)[22] is defined as a technique for data analysis and
pre-processing. It converts the original data into a set of linearly independent repre-
sentations on each dimension linear transformation algorithm. It is commonly used to
extract the main feature components of data vectors and thus reduce dimensionalities.

Structural Deep Network Embedding (SDNE)[11] The definition of this technique has
been heavily introduced in the previous sections.

In this case study, we aim to perform the task of delay prediction (especially primary de-
lays) for train services based on the historical operational data. For measuring the deviation
between the predicted delay time and actual delay amount, we use the average cross vali-
dation score and standard deviation to evaluate the skill of proposed model on unseen data.
It uses a limited sample in order to estimate how the model is expected to perform in general
when used to make predictions on data not used during training. In cross-validation, we
partitioned our data set into a fixed number of folds (here is 5), run the analysis on each fold,
and then averaged the overall error estimate.

4.6. Reference Datasets

The proposed dataset is provided by TransPennine Express1, which is a famous train op-
erating company in Britain. This data is only used for the research purpose, applied to
cooperation activities conducted between the railway operating company and the University
of Leeds Transport Research Institute. It was directly provided by the data management
department of TPE and does not belong to open source generic data under the scope of
GDPR. Therefore, in this case study, the Leeds team only able to access to the dataset, but
not enabled with ownership and sharing authorities. Its major business activities are provid-
ing regional and intercity passenger rail services between the cities of Northern England and
Scotland. These services cover three regional routes around Manchester area and major
cities such as Glasgow, Liverpool, Leeds, and Newcastle are connected by the three main
routes. The target network consists of 1348 train instances that operate in a medium-sized
network with 177 stops/stations and 192 edges/links between these nodes. Figure 4.3 below
shows the route map operated by TransPennine Express. Different colors represent different
routes. The navy blue one, which is “North TransPennine”, is the busiest one which passes
through the core area of Manchester and Leeds. The purple one, we called “TransPennine
North West”, mainly undertakes passenger traffic bound for Scotland. And the light blue
one, “South TransPennine”, provides services to Sheffield and further south.

1https://www.tpexpress.co.uk/
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Fig. 4.3. Route map for the train services of TransPeninine Express (available from
http://www.projectmapping.co.uk/Reviews/Resources/TPERouteMapDec201

9nongeo.pdf)

4.7. Expected Results and Possible Criticalities

The codes implementation of SDNE model was based on “Keras”2, which is a well-known
deep learning API written in Python, running on the top of the machine learning platform
”TensorFlow”3. After applying the SDNE algorithm on the refered TransPennine network, we
are expected to obtain the embedded node representation for each station. Where each row
represents an embedding and each column gives information about the value of a specific
position, Notably, if we consider each digit of the embedding vector individually there is
no meaningful explanation can be given however if all the values compound together as a
whole, the embedded information can be preserved effectively. We choose 8 here as the
length of each embedding since 28 = 256 > 177 (the number of stations in this network).
After acquired the embedded representation we then start to validate the performance of
the SDNE model. In a simple case, we obtain a continuous embedding vector for each
element in a 11-node toy network (we suppose the output shown as figure 4.4). Euclidean
distance between the corresponding node pairs can be effectively calculated. The lower

2https://keras.io/
3https://www.tensorflow.org/
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Euclidean distance value, the more close they are. In contrast, the lighter color the cell has,
the farther the projected embedding expression distance is in the vector space. We can
explicitly explain this heatmap from the following perspectives:

Fig. 4.4. heat map of Euclidean distance between station pairs

• The overall trend is, if the geographical distance between two stations is farther, the
Euclidean distance between their embedded vectors are projected to be remote. We
can easily identify this characteristic from the gradient color distribution.

• From the top-left corner heat map – the heat map between nodes 0, 1, 2 and 3, we can
see the distances between them are similar and very small, which highly preserved
the characteristics of clustering here since they situated in the same urban area (less
than 2 miles) in real-world. In other words, in the real-life network, the location of
these four stations are very close to each other and the spatial distribution density of
stations in this area is much higher than other areas in this network.

• Node 8 and Node 10 are neither directly connected to each other, nor locating on
the same line (route). Interestingly, they have a similar Euclidean distance in terms
of each of the other nodes in this network which means they have been subjected
as similar vectors in the Euclidean space. From this perspective, we can see the
SDNE framework generates node embedding representations not only by first-order
proximity, but on highly preserving the second-order proximity of the network as well.
In other words, the model identified Node 8 and Node 10 hold a similar ”structural role”
in the entire network (they are both the terminal stations in the railway network, they
are both the station travels a long journey time to arrive the adjacent station).

The SDNE model is only able to generate a node embedding vector for each station. We
are also interested in further modelling the network topology from the route perspective as
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this will generate a more compressed vector for the subsequent prediction task. To this aim,
Singular Value Decomposition (SVD) [23] – is introduced for generating route vectors. To
the best of author’s knowledge, it is the first time to introduce such matrix decomposition
technology into train delay prediction procedure. SVD performs the matrix decomposition
by extracting the most essential information (called ‘singular values’) in the original vector.
By using SVD we are able to represent the original dataset by a much smaller dataset, such
that the noise and redundant information are significantly reduced. From this perspective,
SVD can be regarded as a process of extracting the most relevant features from a set of
ordered node embeddings. (Shown in figure 4.5). Where we extracted the route information
from the station vectors: 1191 routes representations corresponding to all available train
service instances have been generated by orderly concatenating the en-route station
embedding, and compute the sigma matrix for each of the routes, respectively. Based on
this approach, the final route embedding for each service was generated accordingly.

Fig. 4.5. Process of performing route embedding

The output of route-embedding method above was finally implemented within three classical
supervised ML algorithms to predict primary train delays; the three ML algorithms are: Deci-
sion Tree (DT) [19]; Random Forest (RF) [20]; Multi-Layer Perceptron (MLP) [21]. In addition,
we compare our Singular Value Decomposition (SVD) under SDNE framework, with Princi-
ple Component Analysis (PCA) strategy [24] - PCA is a technique used for extracting the
main feature components and reduce dimensionalities. On the basis of these benchmarks,
we intend to perform a five-fold cross-validation on the pre-processed dataset. Running the
learning experiments on each fold and then inspect the overall prediction power. Confusion
matrix is another tool that will be used to visualize the performance of classification algo-
rithms. For each prediction task perform in DT, RF and MLP, all predictable cases/instances
are intend to be classified into five categories: none-delay (0), mild delay (1), moderate delay
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(2), serious delay (3), and severe delay (4). Such that we can easily calculate the prediction
accuracy of different predictors on various delay level respectively. Current the topological
relations between each traffic elements have been captured and we have plan to incorpo-
rate more hidden correlations from the perspective of temporal and sequential-interactions.
Our future work will focus on how to learn the correlations between primary delays and sec-
ondary delays and thus further estimate the occurrence of secondary delays. A table 4.1
below has been given to summarize where we highlighted most promising candidate strat-
egy for each module. Column “Contributions” gives the information about what the main
tasks/actions should be taken within this module. The description of the proposed solution
including the applied AI components and suitable techniques we identified previously.

Table 4.1: Suitable AI approaches for Primary Delay Prediction

Module Contributions Suitable Approaches

Node Embedding Module Capturing structural information for TPE network SDNE

Route Embedding Module Concatenating the generated node embedding
into meaningful route vectors

SVD

Delay Prediction Module Predicting the overall delay level for each train service
Decision Tree
Random Forest
Multi-Layer Perceptron
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5. Incident Attribution Analysis

5.1. Introduction

Several prior studies have considered the use of intelligent approaches and AI-based apps
to forecast railway accidents. Extracting usable information from informative incident reports
is one of the first steps in making such forecasts. The structural dataset can then be used to
test the appropriate modelling methodologies.
Each incident takes place in a station or along a railroad route, and each has its own set
of circumstances. These reasons might be individual or hybrid, and they must be well-
documented once they occur. There are various techniques to determining what specific
internal/external elements influence the probability of incident events occurring. Because
it is based on real data rather than technical decisions, the text mining approach is the
most extensively utilised. For example, [25] suggested an NLP model to extract insights
from railway incident reports by disclosing the frequency, distribution, and co-occurrence of
each incident term. Using text analysis tools, this study shows that it is possible to map
distinct sequences of English text to concepts and entities in incident domains. [26] investi-
gated the link between incident report texts and the real cause of adverse events using word
embedding algorithms (GloVe and Word2Vec). The results showed that this approach can
accurately diagnose incident causes based on report narratives while also detecting major
anomalies between recorded reporting and real condition. The goal of the graph network
representation in this part is to extract the topological graph’s critical feature information.
The feasibility of using the DT approach in hazard categorization was investigated in [27].
An examination of accidents at railway stations was done in order to anticipate the charac-
teristics of passengers who were involved in incidents. While [28] looked on the viability of
predicting traffic incidents one month ahead of time on two high-speed train lines in Spain.
Furthermore, [29] provided a general prediction model for weather-related incidents in the
United Kingdom from the standpoint of meteorology, demonstrating the capability of adapt-
ing diverse formats of weather events in the incident prediction process.

5.2. Background and Description

As we have seen in section 5.1, incorporating empirical data into the statistical analy-
sis/regression process has become the most significant feature in the tasks of abnormal
events/disruptions prediction. Such data could include information regarding the frequency,
location, and timing of various disturbances. However, we discovered from the literature that
using empirical data to evaluate disruption frequencies and implications of various disruption
is insufficient. Consider a medium-sized Railway transport network with 200 stations, where
the goal is to forecast incident frequencies and impacts for 30 different disruption kinds dur-
ing five different time periods during the day, and individually for each season. Then at least
200×30×5×4=120,000 empirical observations are necessarily required. To put it another
way, each of these 120,000 cases requires enough empirical observations to fit a probability
density function to. In practice, this means that assembling such a large amount of empirical
evidence from historical disruption records is impossible (at least it is not economical). One
of the outstanding advantages of ML-based methods is they have excellent performance on
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the limited dataset due to their hierarchical structural training system and intelligent inferring
abilities. In additional, Data augmentation is another technique widely employed in machine
learning, not just for limited data problems, to increase the variation in the dataset. Data
augmentation exploits dynamics in the dataset to generate new examples from the available
dataset. For larger datasets, simple transformations such as reflection, rotation and trans-
lation are effective. There are also more complex approaches to data augmentation such
as Generative Adversarial Networks and Style Transfer Networks. In other words, The intro-
duction of a supervised learning prediction model to predict disruption frequency and impact
for each individual Railway transport network element is both promising and necessary, as
it allows for disruption predictions to be conducted at any particular station for a specific
time period without the need for sufficient empirical disruption observations for each location
and time period. Furthermore, ML-based methods are able to improve the efficiency of the
disruption impact prediction process by borrowing effective tools from Data Science sector,
especially when there are not a large number of disruption instances. As a result, the su-
pervised learning method has the benefit of overcoming the computing challenges posed by
common traffic simulation models used in real-world Railway networks.

5.3. Objectives and Research Questions

There has been a few of work towards investigating incident frequencies under the back-
ground of railway traffic safety. One of the limitations of this objective is that most of these
traffic researches primarily used descriptive and aggregate models to predict probabilities
of various events. On the one hand, the complex nonlinear spatial-temporal interactions
between different train vehicles (e.g. timetable conflicts) and operators (e.g. track acces-
sible rights) comprehensively determine primary delays status for individual train services.
They are difficult to be accurately predicted in real scenarios if we fail to preserve these
relations. On the other hand, directly feeding all the observed relations/deterministic factors
even graphical objects into the conventional statistical analysis function or descriptive model
result in the computation space too vast thus computation efficiency will be undermined.
To this aim, we plan to develop a disaggregated modelling approach to predict disruption
frequencies and to predict the corresponding impacts for each disruption type. Supervised
learning approaches are proposed to perform these predictions, which allows the predictor
to estimate disruptions at individual stations for each time period. Considering there is no
sufficient empirical disruption observations available for each location and time slot, this
approach will enable a fast and accurate prediction of disruption impacts for more unknown
disruption instances without requiring a lot of historical disruption observations. According to
the considerations above, we proposed several Research Questions (RQs) under the scope
we proposed:

RQ1: How to develop a generic methodology to estimate the occurrence possibility of in-
cidents/disturbances and their subsequent impacts on potential delays, for different
causes, individual stations, and multiple time period, by incorporating the specific char-
acteristics of the different stations?

RQ2: How can we properly extract useful information from incident report/log, which can be
easily utilised by the model we developed in RQ1?

RQ3: Can we demonstrate possible answers to RQ1 and RQ2 through a simple proof-
of-concept demonstrator in order to inspire future developments and a technology
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roadmap?

5.4. Methodology and Tools

Scientifically, commonly seen supervised machine learning model, such as Logistic regres-
sion, MLP, KNN and Random Forest are qualified to predict the frequency of occurrence for
different kinds of accidents and their passenger delay impacts for individual railway stations,
by incorporating the specific characteristics of each station. Practically, aim to provide
dispatch agent with predicted disruption impacts for each individual station in the network,
for each distinguished time period and disruption type, supporting the agent to prioritise
locations where to put mitigation measures (rescheduling) in place. The expected output of
this module is to identify the location and time period where and when accidents/disruptions
are most likely to occur, which will be quantified by its corresponding occurrence probability.

At the very first step of our research, we need to conduct an empirical study about the
different disruption types and distribution pattern among UK railway system. Next we will to
adopt multiple supervised machine learning model mentioned before to analysis and fitting
the distributional probability for each disruption type per station and per time period. We
will also discover the linear or non-linear relations between presumed disruption predictors
and the occurrence likelihood of different types of incidents for each station based on the
empirical evidence we discovered in the first step.

5.5. Artificial Intelligence and Machine Learning Models

This section intends to elaborate how the proposed methodology will be used to predict
disruption exposure and impact at different BRS stations. Firstly, we will introduce the pro-
posed modelling framework. Then the supervised learning model used to predict disruptions
will be explained, followed by the model for disruption impact predictions. Before the actual
specification of the machine learning model we will start with the definition for variables and
notations that are going to be used in this case study.
Let us define each station s ∈ S with |S| indicating the total number of stations in the con-
sidered network. i and j represent the departure station and terminal station for a certain
journey (route), respectively. The type of disruptions was defined by d, and |D| is the number
of disruptions types. In the modelling we assume that time t is not continuous but is split into
distinguished time periods and we have a set of time slices called T . In addition, we also de-
fine the disruption frequency f and the disruption impact w. To calculate the measurement
of station significance, we define its formulation as below.

Cs =
∑
t∈T

∑
d∈D

(fd,t,s × wd,t,s)

Where the significance of a station is defined as the sum of all time periods during which the
predicted frequency of each disruption f (the total number of disruptions per year) at station
s multiplied by the predicted impact w. In practice, the impacts of a disruption are generally
more than passenger delay only (e.g. the costs of crew rescheduling and passenger delay
compensation, etc.), and more than the stations themselves (e.g. incidents also occur at
the links between stations), yet we limit our scope within the nominal travel time impact a
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Notation Explanation
s, S Railway station, The set of the stations
i Departure station for a journey
j Terminal station for a journey

e, E Edge of graph G, The set of edges
d,D Disruption type, The set of disruption types
t, T Time period, The set of time periods
Cs Station significance for station s
f Disruption frequency
Lt The travel time for a journey
p Disruption probability
q Passenger demand
N Network vulnerability
w Passenger delay

y, Y Label for samples, the set of label categories
ŷ Predicted label for classification models
x Dummy variable
li,j The length of the shortest path between i and j
ni,j The number of simple paths between i and j
∆h Increased passenger-weighted travel time

disruption has inflicted on passengers at specific stations. In other words, the more frequent
with different kinds of disruptions occur, and the more yearly passenger delay hours these
disruptions result in, the more significant the station is. Further, we define the considered
network vulnerability N as the sum of predicted station significance just as the equation 10.

N =
∑
s∈S

Cs

It is worth to note that these two equations do not consider the interactions between different
disruptions occurring at the same time, as this may result in inter-dependencies that enlarge
the impact of independent disruption event. In this module we propose an integrated mod-
elling framework which incorporates the calculation process of Cs and N simultaneously in
which the supervised machine learning models is used to predict disruptions and passenger
delay impacts, while the unsupervised learning model (clustering) is applied to categorise
different stations. The modelling framework is explained in the remainder of this section.

Next a major task is to employ supervised learning approach to predict the exposure in
terms of different disruptions d ∈ D at station s ∈ S during each time period t ∈ T . Due to
the fact that each disruption type occurs relatively infrequently at a particular station within
a specific time period, what we want to do technically implies predicting the occurrence
of relatively rare events. For this reason we cannot regard fd,t,s as the objective function
since the model always predicting zero for it. Which will further lead to a low MSE (Mean
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Squared Error) and high F1 score (meaning the model has a poor ability on fitting the
target dataset and hard to be transferred to the unseen dataset). Alternatively, we consider
the disruption probability pd,t,s of every disruption type detected during each considered
time period (i.e. each AM, PM, Peak hours and evening period). Therefore the amount
of available samples in this model equals |S| × |T |. Specifically, we apply a classification
algorithm which will calculate disruption probabilities for each d ∈ D and then assigns each
sample to one of the disruption category d based on the highest probability. Thus the di-
mension of the target vector equals (|S|× |T |, 1), where the column position can take |D|+1
different values. A matrix with the size of (|S|×|T |, |D|+1) will be the final output of this part.

One-hot encoding method will be applied for the categorical features Time of Day, Seasons
and Lines, in order to capture the potential influence of different slots, i.e. peak, off-peak,
evenings and weekends even the switch of season, on disruption probabilities. A line refer
to the specific train service serving each station. An intuition behind it is that different
stock types or different state/age of infrastructure potentially influence the occurrence
of accidents. The features of Start station and Transfer station are regarded as binary
attributes for prediction. Being equal to 1 if the station is a departure/arrival or route-to-route
transfer station, respectively. It is believed that the occurrence of some disruptions is
related to a station is departure/arrival or due to malfunctioning train or the late/absent of
a train driver often arise here. Similarly, it is reported that transfer stations might be more
sensitive to get involved in disruptions as more complex infrastructure such as switches,
large passenger volumes, and longer passenger in-station time.

Given the purpose of predicting the probability of various disruption types at a certain station
within specific time period, we implement two different machine learning algorithms suitable
here: Logistic Regression classifier and Multi-Layer Perceptron classifier. The whole dataset
will be split into a 75% training set and a 25% test set. There is no validation set because
we will apply a randomised five-fold cross validation here. Next we will propose the formula
of cross entropy loss to generate the accuracy matric. As the equation shown below, it cal-
culates the log-likelihood of the true label y, given the predicted probability that an instance
equals this true label.

log p(y|ŷ) = y × log pŷ + (1− y)× log (1− pŷ)

5.6. Reference Datasets

Network Rail will regard primary delay as a scaler that mainly contribute to the performance
for train services – PPM, There are various possible reasons for a particular event. For
example, in the section of ‘External events – Train Operator Company Responsibility’ in the
list below.
And according to Network Rail, disruption responsibility corresponds to British Railway
Transport System can be attributed to the following causes:
In the orange part of pie chart, issues including operational issues, damage to or failure of
the infrastructure of the railway such as tracks, signalling or points, including where bad, but
not extreme, weather causes delays to the rail network (Network Rail responsibility).

• Network Rail External here are the delays caused by external factors such as weather,
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Fig. 5.1. A category for the potential reason of events

Fig. 5.2. A category for the potential reason of events

trespass, vandalism, cable theft and fatalities, these causes normally result in serious
consequences such as hours-long suspension of a specific route/stations, which we
called as ”disruptions”.

• TOC External: includes issues which the train company couldn’t have foreseen such
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as passenger action or illness on trains, damage to trains by road vehicles or the forced
closure of a station as they were managed, commonly known as ”incidents”.

• TOC on TOC: Several situations under this category: Firstly, train operation company
has its services delayed by the actions/impacts of another train company such as a
delayed train from one company causing other connection trains (either at the same
station or the neighboring station) to be delayed (i.e., delay propagation). Secondly,
As a result of delay propagation, delays may turn into operational conflicts between
adjacent trains, which may disturb the arrangement of the train operation plan and
threaten the operational safety of the trains from other train operators (i.e., timetable
conflicts). Thirdly, the small disturbances that barely can be noticed or recorded by the
system, known as ”disturbances”. And likely, these ”disturbances” will be recovered
during train running by giving it the ”Margin time” or ”Running Allowance”.

• FOC on TOC: Train companies having their services delayed because of the actions of
a freight train on the network. (We do not incorporate freight trains in this case)

5.7. Expected Results and Possible Criticalities

In this sub-task we aim to adopt multiple supervised machine learning model, such as re-
gression tree, Multi-layer Perceptron, K-nearest Neighbours and Random Forest to analyse
and fit the distributional probability for each disruption type per station and per time period.
During which we will discover the linear or non-linear relations between presumed disruption
predictors and the occurrence likelihood of different types of accidents for each station.
To sum up, this case study demonstrates a proof-of-concept about how supervised-ML
approaches/algorithms could be leveraged to deal with the tasks of predicting disruption
exposure and potential impact at different stations. It is worth to note that our proposed
models do not consider the interactions between different disruptions occurring at the
same time, as this may result in inter-dependencies that enlarge the impact of independent
disruption event. This may cause the performance of result less convinced especially in a
very large-scale network. However, it will minimise the scope of our research question into
an ideal environment and benefits us to focus on the proof-of-concept itself.

Data is most essentially required to perform an high-quality disruption analysis throughout
the entire chapter. In the case of interactive visualization, it would be possible to exploit
already existing collections of delay attribution data (i.e., Open data feeds from Network
Rail 1 and leverage existing train operating timetable provided by TPE (i.e., The main data
resource we use in last case study) to build a suitable dataset. A supervised-ML model
must be paired with relevant data for it to become a reliable regression/classification model
- A model without ground-truth data is unconvincing and meaningless, while the data,
which is going to be collected from the previous incident reports and disruption records.
Collecting sufficient data is challenging and unrealistic since it is often a lack of good quality
disruption log data especially some severe disruption events are not that commonly occur
in the real-life. As the requirement of input data scale and limited computing resources of
supervised-ML models, the incorporated incident attribution analysis will become increas-
ingly reliable and reference valuable.

1https://publicdatafeeds.networkrail.co.uk/ntrod/welcome
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From a practical standpoint, the supervised-ML based incident attribution analysis frame-
work we suggest in this case study can not totally replace the traditional statistical methods
and linear regression algorithms. As an novel complement to traditional applied methods, it
is expected to provide more predictive insights for the occurrence of different kinds of dis-
ruptions before it is actually detected. A summary in the table 5.1 has been provided where
the most suitable solution for each module has been highlighted. To investigate the compli-
cated relationships between modeled train services and events, our suggested modules in
this case study include user-friendly interactive visualizations with appealing interfaces and
look-up functions. The potential primary/secondary delay resulting from the current inci-
dents/train service event across the TPE network is then estimated using a GraphSAGE-
based model based on the visualized event-delay interactions. In order to enhance overall
service quality, a pilot intervention simulation will also be carried out using a number of su-
pervised machine learning approaches. The information about the key contributions that
should be completed inside each module is provided in the column named ”Contributions.”
A list of the suggested solution, which includes the relevant techniques and AI components,
shown in the last column.

Table 5.1: Suitable AI approaches for Incident and Secondary delay Analysis

Module Contributions Suitable Approaches

Interactive Visualization Module
Visually illustrating how the sequential
chain reaction is triggered between
different incidents and train services.

Big Data Analysis
NetworkXa

Plotlyb

Intervention Simulation Module Simulating the effects of interventions
to improve service performance.

Regression Tree
Multi-layer Perceptron
K-nearest Neighbours
Random Forest

GraphSAGE-based Module

Predicting if there is a trigger reaction
between a provided service
and the existing train/events
with any cause-respond effects.

GraphSAGEc

a. https://networkx.org/documentation/stable/index.html
b. https://plotly.com/
c. https://snap.stanford.edu/graphsage/
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6. Conclusions

The definition of two pertinent case studies in the context of AI Train Delay Prediction and
Incident Distribution Analysis is covered in this deliverable. The case studies will be created
as the project moves forward in order to gain some insightful information that will help define
future roadmaps for the usage of AI methods in linked railway applications. At this point,
the case studies have primarily been defined in terms of their history and motivation, aims
and research questions, intended AI methodology and tools, available datasets, the AI/ML
models that will be utilized, expected outcomes, and potential criticalities. In order to fully
utilize the capabilities of AI and ML, researchers and engineers must handle a number of
opportunities and difficulties that will become clearer during the proof-of-concept stage. Due
to the project’s scope, a number of pertinent scenarios had to be chosen while taking into
account the available resources, the goals that could be achieved, and the outcomes that
could be obtained. Despite this, we have highlighted a wide range of potential research av-
enues and angles that could be pursued in addition to the two case studies that are covered
in this deliverable.
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